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RELEVANCE
Megan Czasonisa, Mark Kritzmanb and David Turkingtonc

The authors describe a new statistical method for improving forecasting called relevance.
They describe their new method from both a conceptual and mathematical perspective,
and they show how relevance links regressions to event studies and machine learning
algorithms.

1 Introduction

People rely on experience to shape their view
of the future, but the way they naturally process
experiences differs from the method that classi-
cal statistics prescribes. The natural process is to
record experiences as narratives, to focus on past
experiences that are like current conditions, and
to focus on unusual experiences. Classical statis-
tics advises us to record experiences as data, to
include observations irrespective of their similar-
ity to current circumstances, and to treat unusual
observations with skepticism. The purpose of our
research is to reconcile classical statistics with the
way people naturally process experiences based
on a notion called relevance.

We proceed as follows. First, we describe rel-
evance conceptually, including how it is used
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to improve forecasting. We then explain rele-
vance mathematically, and we show how rel-
evance relates regressions to event studies and
machine learning algorithms. We conclude with
a summary.

2 Relevance Conceptually

Not all observations we use to form predictions
are equally relevant. We therefore propose a way
to filter observations based on a statistical mea-
sure of relevance that rests on a key insight from
information theory and follows from a mathemat-
ical equivalence to linear regression analysis. We
determine relevance from a set of independent
variables and use it to predict a dependent vari-
able as a relevance-weighted average of the prior
values of the dependent variable. This approach
offers unique insights about regression analysis
and often leads to better predictions.

Relevance has two components: similarity and
informativeness. First, let us consider similarity.
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Although classical statistics advises us to use as
many observations as we can obtain, we often
focus on more recent observations when compil-
ing data samples to use in forecasting models.
This practice of censoring or de-emphasizing
older observations may be quite helpful, espe-
cially if the system that produced the observa-
tions underwent structural change. The implicit
assumption is that recent data is more like cur-
rent conditions; therefore, it is more relevant. But
recency is not the only way to judge similarity,
nor is it necessarily the best way. We should also
look to history for experiences that we judge to
be like current circumstances and use those sim-
ilar experiences to provide guidance about how
the future will unfold, irrespective of the chrono-
logical position of those past experiences. This
perspective does not necessarily exclude recent
experiences. Rather, it offers a more general
framework by which to determine the similarity of
an observation, and hence its relevance. Although
it makes sense to extrapolate from past experi-
ences that resemble current conditions, doing so
subjectively could be quite challenging. We there-
fore propose a statistical measure of the similarity
of past observations with current conditions.

Now let us consider the other component of
relevance, informativeness. Classical statistics
tells us that if we wish to exclude observations,
we should exclude those that are most extreme
because they might reflect errors or arise from
unusual circumstances that are unlikely to reap-
pear. While it certainly makes sense to exclude
incorrect data, we should not exclude or de-
emphasize correct, outlying observations. To the
contrary, we should emphasize them because they
are more likely to reflect useful information as
opposed to noise. Indeed, people intuitively apply
this notion of informativeness when they focus
on notable experiences more than mundane ones.
Unlike similarity, the statistical informativeness
of an observation does not depend on current

conditions. It instead depends on how different
an observation is from average conditions, which
is to say, its improbability. This view of infor-
mativeness is consistent with information theory,
which posits that the information contained in an
event is inversely related to its probability.1

Here is how to think about the connection between
probability and informativeness. Suppose we are
interested in forecasting the returns of a finan-
cial asset based on some related factor. And
suppose that, in addition to this factor, there
are other unobservable forces that influence the
asset’s return. First, consider an observation in
which the factor behaves in a typical way. It is
not very informative, because we cannot tell if the
return was caused by the factor or by the multi-
tude of other forces we do not observe. There are
many plausible explanations for the return, and
we should not expect that the factor’s behavior
is its key determinant. Now consider an observa-
tion of the factor that is very unusual. If there is
a relationship between the factor and the return,
then it will have a significant impact that stands
out from other influences. Therefore, whatever
return we observe in this rare instance reveals a
lot about the underlying relationship between the
factor and the return. In general, unusual condi-
tions are more informative because it is easier to
discern the true nature of a relationship.

If we consider that informativeness does not
depend on current conditions whereas similar-
ity does, it becomes clear that the sum of both
quantities across all the observations in a predic-
tion will vary according to current conditions. To
make the average relevance zero, we must add
the informativeness of current conditions to the
sum of similarity and informativeness for each
historical observation. This result is a mathemati-
cal outcome, which we show in our mathematical
description of relevance. But it has an intuitive
interpretation. By including the informativeness
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of the current observation, we rescale relevance
from a relative quantity to an absolute quantity. It
is analogous to shifting the line of least squares
in a regression analysis of the full sample to fit
just the subsample of relevant observations. If
we did not include the informativeness of the
current observation, relevance could sum to an
arbitrarily large positive or negative value, with
the consequence that we would struggle to distin-
guish clearly between relevant and non-relevant
observations.

To summarize, the relevance of a given observa-
tion to a prediction is the sum of its similarity
to current conditions, its dissimilarity from aver-
age conditions, and the dissimilarity of current
conditions from average conditions.

Similarity and informativeness are multivari-
ate concepts. When we speak of observations
and conditions, we have in mind a multivariate
description of circumstances, specifically a vec-
tor of values for a set of independent variables.
When we measure the similarity of a past obser-
vation with the current observation, we would
like to consider not only the similarity of the
values of each variable in isolation, but also the
similarity of their co-occurrence. And when we
measure the informativeness of an observation,

we would like to consider both the dissimilarity
of the values of each variable from average and
the dissimilarity of their co-occurrence from their
average co-occurrence. Put plainly, we would like
to consider how variables behave independently
as well as how they interact with each other when
measuring similarity with current conditions or
dissimilarity from average conditions.

We use a statistic called the Mahalanobis dis-
tance to measure these features of data precisely.2

Unlike the standard Euclidean distance, the
Mahalanobis distance accounts for the variances
and correlations of variables. All else equal, two
observations are more distant (less similar) if
the spread between their values is large com-
pared to the typical variance of those values. And
all else equal, two observations are more dis-
tant if the pattern of differences between their
values diverges from the typical pattern of differ-
ences in values. The Mahalanobis distance neatly
summarizes these effects in a single number.

Exhibit 1 helps to visualize the Mahalanobis
distance.

The scatter plot on the left is of two variables that
are uncorrelated and have equal variances. The
circles represent distances from the center of the

Exhibit 1 Scatter plot of two hypothetical variables.
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data: that is, their average values. All points on a
given circle, such as pointsAand B, have the same
Mahalanobis distance from the center. In this case
they also have the same Euclidean distance. The
scatter plot on the right is of two variables that are
positively correlated and have unequal variances.
In this case, ellipses that are centered on the aver-
age values have the same Mahalanobis distances.
However, not all observations that have the same
Euclidean distance will have the same Maha-
lanobis distance. Consider, for example, points
C and D. They both have the same Euclidean
distance from the center, but C is closer in Maha-
lanobis distance than D. C is statistically closer
because it is consistent with a positive correla-
tion, whereas D represents an interaction that
is inconsistent with a positive correlation. This
exhibit illustrates how the Mahalanobis distance
considers the interaction of the variables.

Exhibit 2 offers a visualization of the components
of relevance, similarity and informativeness.

Exhibit 2 shows three observations of two hypo-
thetical variables: two historical observations and
the current observation. Historical observations

A and B are equally distant from the current
observation of the independent variables. They
therefore have the same degree of similarity.
However, historical observation B is further from
the average of all the observations which are not
shown but whose center is the intersection of the
two axes. It is therefore more informative than
historical observation A and more relevant.

Why should we care about relevance? We should
care because it allows us to use observations
more effectively in forecasts. To understand how
relevance improves forecasting, we first need
to understand how it is related to regression
analysis.3 The prediction from a linear regres-
sion equation is mathematically equivalent to a
weighted average of the historical values of the
dependent variable in which the weights are the
relevance of the observations of the independent
variables.

This equivalence reveals an intriguing feature of
regression analysis. Owing to the symmetry of
the observations around a fitted regression line,
regression analysis places as much importance on
non-relevant observations as it does on relevant

Exhibit 2 Similarity, informativeness, and relevance.
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observations. It just flips the sign of the effect
of the non-relevant observation on the depen-
dent variable. This feature of regression analysis
invites a fundamental question about forecasting:
Are non-relevant observations as useful in form-
ing a prediction as relevant ones? In some cases,
they may be, but not always, and perhaps not usu-
ally. Suppose, for example, we wish to forecast
the economic outcomes of a recession. Should we
place as much importance on past conditions of
robust growth as on past recessions? This is an
empirical question, but we suspect that intuition
is often right to suggest that relevant observations
are more useful to a forecast than non-relevant
observations.

This insight about how regression analysis treats
relevant and non-relevant observations leads to
the key innovation we propose for forecasting.
Researchers should consider a two-step approach
to forecasting. First, create a subsample of rele-
vant observations. And second, form the predic-
tion as a relevance-weighted average of the past
values of the dependent variable in the subsample.
This two-step approach to forecasting is called
partial sample regression.4

One might ask why we should not simply apply
regression analysis to the subsample of relevant
observations. Why do we instead take a weighted
average of the past values of the dependent vari-
able? The answer is that the weights preserve
valuable information about relevance in the con-
text of the full sample. If we were to apply
regression analysis to the relevant subsample, it
would consider some of the relevant observations
as not relevant and interpret them opposite to the
way they should be used to inform the prediction.

Perhaps at this point it would be useful to sum-
marize our concept of relevance.

(1) The relevance of an observation is deter-
mined by a set of independent variables

for the purpose of forecasting a dependent
variable. It equals the sum of an obser-
vation’s similarity with current conditions
and its dissimilarity from average condi-
tions. Dissimilarity from average conditions
measures an observation’s informativeness.

(2) By including similarity in our definition of
relevance, we are simply following intu-
ition, which often directs us to consider past
events that are like current conditions to help
us think about the path forward.

(3) Observations that are dissimilar from their
average values are more informative than
observations that are like their average val-
ues, because it is easier to discern causality
from unusual observations than from com-
mon observations.

(4) We should include both the informativeness
of past observations as well as the infor-
mativeness of current observations because
by including both, the relevance of all
the observations sums to zero, which
establishes zero as a natural threshold for
relevant and non-relevant observations.

(5) To measure an observation’s similarity with
current conditions we should consider the
isolated similarity of the variables’ values
with current values, as well as the simi-
larity of their co-occurrence with the co-
occurrence of current values. The same is
true for how we measure dissimilarity from
the average values to determine informa-
tiveness. We should consider the values of
the variables in isolation as well as how they
interact with each other.

(6) We use a statistic called the Mahalanobis
distance to measure similarity and informa-
tiveness. The Mahalanobis distance consid-
ers variables independently as well as how
they interact with each other. It also converts
all values into common units.

(7) The prediction from a linear regression
model is mathematically equivalent to a
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relevance-weighted average of the past val-
ues of the dependent variable if it is averaged
over the full sample.

(8) This equivalence reveals that regression
analysis places as much importance on non-
relevant observations as it does on rele-
vant observations, which is often counter-
productive.

(9) We should therefore consider forming our
prediction as a relevance-weighted average
of the dependent variable from a subsample
of observations that have positive relevance.

(10) We should not, however, apply regression
analysis to a subset of relevant observations,
because it will interpret some of the relevant
observations in a way that is opposite to how
they should inform the prediction.

3 Relevance Mathematically

In our conceptual discussion, we explained rele-
vance within the context of a current observation
and past observations. We now define it more
generally between any pair of observations xi

and xj, to stress that relevance is a symmetric
measure. We assume that there are N histor-
ical observations of M independent variables,
which we organize into an N-by-M matrix X.
The observations xi and xj are both row vectors
with M elements corresponding to the value of
each independent variable. We define similarity
and informativeness in terms of these two vectors
along with the mean vector x̄ = 1

N

∑N
i=1 xi and

the M-by-M covariance matrix � = 1
N−1(X −

x̄)′(X − x̄) of X. We use the notation ′ to indicate
matrix transpose, and we denote the inverse of the
covariance matrix as �−1.

simij = sim(xi, xj)

= −1

2
(xi − xj)�

−1(xi − xj)
′ (1)

infoi = info(xi)

= (xi − x̄)�−1(xi − x̄)′ (2)

Similarity equals the Mahalanobis distance
between xi and xj, in its squared form, mul-
tiplied by negative 1/2. It may be helpful to
consider the purpose of each step in this calcula-
tion. The spread between the vectors measures the
similarity of the values for each variable in isola-
tion. Multiplying by the inverse of the covariance
matrix converts the spreads for each variable into
common units, effectively dividing each spread
by the variance of the corresponding variable. It
also captures the similarity of the co-occurrence
of the variables compared to their typical pat-
terns of co-occurrence. When we post multiply by
the spreads between the vectors, we collapse the
result into a single number. The negative sign con-
verts the notion of distance into one of closeness
(similarity). The factor of 1/2 offsets the double
counting that occurs from the identical multipli-
cation of xi with xj and xj with xi for pairwise
comparisons.

We measure informativeness as the Mahalanobis
distance between xi and x̄, the full sample mean
of X. This time, however, we retain the positive
value of the distance, as we are interested in how
dissimilar or distant the observations are from the
average values. Also, we do not need to multiply
by 1/2 because the observation is compared to the
average, rather than to another observation.

We define relevance as in Equation (3).

rij = r(xi, xj) = simij + 1

2
(infoi + infoj)

(3)

Recall from our earlier conceptual description of
relevance that we include the average informa-
tiveness of both xi and xj so that the relevance of
all observations sums to zero. This result enables
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us to use a threshold of zero to separate relevant
observations from non-relevant observations. The
inclusion of both vectors’ informativeness is also
motivated by symmetry, whereby the relevance of
observation xi to predicting conditions that match
xj is equal to the relevance of observation xj to
predicting conditions that match xi. In the discus-
sion that follows, we define the conditions of our
prediction as xt; therefore, rit gives the relevance
of any historical observation xi to these current
conditions.

Relevance is independent of the object of our
prediction, Y . In the absence of any informa-
tion from the X variables, our best prediction ŷt

of an unknown yt would be the simple average,
ȳ = 1

N

∑N
i=1 yi. But the utility of relevance is

that we may enhance that estimate by adding a
weighted average of the historical deviations of
Y from their average, where the weights are the
relevance of each xi to xt .

ŷt = ȳ + 1

N − 1

N∑

i=1

rit(yi − ȳ) (4)

Let us now proceed by demonstrating the equiv-
alence between Equation (4) and ordinary least
squares linear regression. First, we rearrange and
consolidate the expression for relevance from
Equation (3).

rit = − 1

2
(xi − xt)�

−1(xi − xt)
′

+ 1

2
(xi − x̄)�−1(xi − x̄)′

+ 1

2
(xt − x̄)�−1(xt − x̄)′ (5)

rit = xt�
−1x′

i − xt�
−1x̄′ − x̄�−1x′

i

+ x̄�−1x̄′ (6)

rit = (xt − x̄)�−1(xi − x̄)′ (7)

We substitute Equation (7) into Equation (4).

ŷt − ȳ = 1

N − 1

N∑

i=1

(xt − x̄)�−1

× (xi − x̄)′(yi − ȳ) (8)

Equation (8) predicts the value of Y above its
average based on observations of X above its
average and Y above its average. The covariance
matrix, by definition, is also a function of X above
its average. Therefore, without loss of generality
we may rewrite the prediction formula under the
assumption that X and Y have means of zero. We
pull xt�

−1 out of the sum because this term does
not depend on i.

ŷt = xt�
−1 1

N − 1

N∑

i=1

x′
iyi (9)

Using matrix notation whereby X contains all
N observations in rows and M variables in
columns, and Y contains all N observations in
rows with one column and noting that �−1 =
(N − 1)(X′X)

−1, we obtain the standard formula
for a linear regression prediction.

ŷt = xt(X
′X)−1X′Y (10)

ŷt = xtβ
′ (11)

4 A Unified Perspective on
Observation-Based Prediction

We now show how the framework of relevance-
weighted prediction relates two common predic-
tion methods that are typically considered to be
distinct: regression analysis and event studies.

We begin with the recognition that linear regres-
sion, and its relevance-weighted equivalent, does
not discriminate between highly relevant and
highly non-relevant observations other than flip-
ping the signs of their predictive contributions.
In cases where relevant observations are more
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reliable than non-relevant ones, it may be bet-
ter to remove the non-relevant observations and
generalize Equation (4) as a sum over a chosen
subsample of n observations, where 1 ≥ n ≥ N:

ŷt = ȳ + λ2

n − 1

n∑

i=1

rit(yi − ȳ) (12)

The application of Equation (12) to a subsample
of the most relevant observations is called partial
sample regression. The λ2 in this formula equals
the variance of rit in the full sample divided by
the partial variance of rit in the subsample: λ2 =
1/(N −1)

∑N
i=1 r2

it/1/(n−1)
∑n

i=1 r2
it . This ratio

equals exactly 1 for a full sample regression and is
very close to 1 for a partial sample regression that
includes half the observations. It removes a bias
that would otherwise occur for a more selective
partial sample regression.

If we apply Equation (12) to a single observa-
tion, n = 1, which we choose for any reason,
we end up with the outcome of a single event.
For example, consider an event study intended to
give a prediction of the path of a chosen variable
following an event that just occurred or is antic-
ipated to occur. As a simple approach, we might
identify a single past observation based on judg-
ment, intuition, or a set of exogenous variables,
and record the outcome of Y at a range of time
intervals after the event. The single observation
we choose could be the most relevant one, but it
need not be. In either case, we may consider each
time interval observation of Y around the histori-
cal event as an application of Equation (12) with
one data point. When n = 1, our prediction for Y

converges to its actual occurrence following the
chosen event.

A composite event study that draws upon multi-
ple events, n < N, is potentially more interesting
and more statistically robust. To conduct a com-
posite event study, we identify a sample of events

and align their chronological position to t = 0.
We then observe the value of Y at various times
following the event, t+1, t+2, t+3, . . . , and we
compute the arithmetic means of these outcomes
across the n events. We interpret these post-event
means as predictions for the path Y will take from
a recent or anticipated event.

Selecting the events for a composite event study
is equivalent to censoring non-relevant observa-
tions as we do in a partial sample regression, but in
a composite event study we are using criteria other
than the relevance of X to determine the subsam-
ple. Now suppose that rather than predicting the
path forward as the simple arithmetic mean of the
observed paths for our defined events, we weight
the observations by their statistically determined
relevance. This relevance-weighted event study
is equivalent to partial sample regression, with
the exception that non-relevant observations are
censored based on identification as non-events as
opposed to the statistical relevance of X.

To summarize:

(1) The prediction from a linear regression
equation is mathematically equivalent to a
weighted average of past values of the depen-
dent variable in which the weights are the
relevance of the independent variables.

(2) This equivalence allows one to form a
relevance-weighted prediction of the depen-
dent variable by using only a subsample of
relevant observations. This approach is called
partial sample regression.

(3) Like partial sample regression, an event study
separates relevant observations from non-
relevant observations, but it does so by using
criteria other than statistically determined
relevance.

(4) As an alternative to predicting the path
from a recent or current event as an arith-
metic mean of past paths, one could use
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a relevance-weighted average of past paths
to form a prediction. This approach would
be equivalent to partial sample regression in
which the relevant subsample is determined
by a separate identification process rather
than statistical relevance.

It is worth noting that the general notion of rel-
evance can extend to more complex prediction
models as well. As we have described, relevance
allows us to weight the contribution of historical
observations in a rigorous statistical way that con-
verges to ordinary least squares regression when
we include all the observations in a sample. It also
allows us to censor some observations by effec-
tively setting their weight to zero and rescaling
the remaining observations. The resulting partial
sample regression forecasts still comprise a linear
combination of historical outcomes for the vari-
able we aim to predict. However, the predictions
are no longer linear with respect to the cur-
rent conditions that inform the predictions. This
occurs because different input conditions censor
different sets of historical observations, thereby
introducing a conditional nonlinear dependency
on the prediction inputs. The data that fuels
the prediction consists of observations that are
sufficiently informative and similar to current
conditions. Various machine learning algorithms
implement related logic, though typically in a
more complex fashion. For example, tree-based
prediction models including random forest and
boosted machines solve for thresholds that deter-
mine which observations to include and which to
censor. In this sense, these models determine their
own notions of relevance which differ from ours
in practice, though not in principle.

The measure of statistical relevance we propose
based on the Mahalanobis distance has a few
comparative advantages. First, it accounts for
informativeness in addition to similarity, which
many other methods do not. Second, it equates to

linear regression when applied to a full sample of
observations, thereby aligning with the simplic-
ity and efficiency of linear regression analysis.
Third, it is transparent, intuitive, and may be cal-
culated directly, without resorting to numerical
iteration. And fourth, by virtue of the simplic-
ity of censoring irrelevant data while retaining
the linear structure of prediction, relevance offers
a powerful and parsimonious way to introduce
conditionality into prediction, which we call par-
tial sample regression. The practical efficacy of
one approach compared to another is an empirical
question, but we suspect there are many instances
in which the properties of statistical relevance
confer an advantage. Further linking the notion
of relevance to more complex nonlinear predic-
tion models may offer a productive area for future
research.

5 Conclusion

Although most of us think long and hard about
which variables to use in our forecasts, we
typically tend not to think as much about which
observations of those variables to include or
emphasize. To the extent we do consider obser-
vations, we are often inclined to place greater
emphasis on more recent observations than on
more distant observations. However, when we
think intuitively about how to forecast into the
future from present conditions, we often look
to past episodes in history that are like present
conditions. This intuition is sound and help-
ful. Observations that are like current conditions
are more relevant to a forecast than dissimilar
observations. But not all observations that are
equally like current conditions are equally rel-
evant. Observations that are unusual are more
relevant than common observations, because it
is easier to discern causality from unusual obser-
vations than from common observations. Thus,
unusual observations are more informative.
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The statistical relevance of an observation to a
prediction is determined by its similarity to cur-
rent conditions, its dissimilarity from average
conditions (which captures its informativeness),
and the informativeness of current conditions. We
include the informativeness of current conditions
to facilitate a natural interpretation of relevance
in absolute terms. By including it, the relevance
of all observations sums to zero, which enables
us to use a threshold of zero to separate relevant
observations from non-relevant observations.

When we measure relevance, not only must we
measure the similarity of variable values with
their current values or their dissimilarity from
average values in isolation. We must also con-
sider the similarity or dissimilarity of their co-
occurrence. We therefore use a statistic called the
Mahalanobis distance to measure similarity and
informativeness. This statistic has two valuable
features: it considers the interaction of the vari-
ables, and it converts their values into common
units.

Our conception of relevance is not arbitrary.
The prediction from ordinary least squares lin-
ear regression is mathematically equivalent to
a weighted average of the past values of the
dependent variable in which the weights are
the relevance of the independent variables. This
equivalence reveals a key insight about regression
analysis, which is that owing to the symmetry
of observations around a fitted regression line,
regression analysis places as much importance on
non-relevant observations as it does on relevant
observations; it just flips the sign of the effect
of the non-relevant observation on the dependent
variable.

This insight about regression analysis invites a
fundamental question. Is it possible to produce
a better forecast from a subsample of relevant
observations than from the full sample? The

answer, of course, can only be determined empir-
ically, but it is not hard to imagine settings in
which our intuition would rightly suggest that we
exclude non-relevant observations.

We should therefore consider a two-step approach
to forecasting. First create a subsample of relevant
observations. Then, form the forecast by taking
a relevance-weighted average of the observa-
tions from the relevant subsample. This two-step
approach to forecasting provides a unified per-
spective on relevance, regression analysis, event
studies, and machine learning algorithms.

Notes

This material is for informational purposes only.
The views expressed in this material are the views
of the authors, are provided “as-is” at the time of
first publication, are not intended for distribution
to any person or entity in any jurisdiction where
such distribution or use would be contrary to
applicable law and are not an offer or solicitation
to buy or sell securities or any product. The views
expressed do not necessarily represent the views
of Windham Capital Management, State Street
Global Markets®, or State Street Corporation®

and its affiliates.

Notes

1 See, for example, Shannon (1948).
2 The Mahalanobis distance was introduced by an Indian

statistician in 1927 and modified by him in 1936 to ana-
lyze resemblances in human skulls among people of
different parentage in India. Mahalanobis compared a
set of measurements for a chosen skull with the aver-
age of those measurements across skulls from different
groups. He also compared the co-occurrence of those
measurements for a chosen skull to their covariation
within each group. He summarized these comparisons
in a single number which he used to place a given skull
into a particular group.
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3 When we use the terms regression or regression analysis,
we have in mind ordinary least squares linear regression
analysis.

4 See Czasonis et al. (2020) for a thorough discussion of
partial sample regression.
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