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Relevance-Based Prediction: 
A Transparent and Adaptive 
Alternative to Machine Learning

Megan Czasonis, Mark Kritzman, and David Turkington

KEY FINDINGS

n This article proposes a new approach to prediction based on relevance, which gives a
measure of the importance of an observation to a prediction, and fit, which measures
the reliability of a specific prediction task.

n Relevance-based prediction addresses the codependence of observations and variables
by identifying the optimal combination of observations and predictive variables for any
given prediction task, thereby presenting a single alternative to both kernel regression
and lasso regression.

n Relevance-based prediction has important advantages with respect to machine learning
because it is more transparent, more flexible, and less arbitrary than commonly used
machine learning algorithms.

ABSTRACT

The authors describe a new prediction system based on relevance, which gives a mathemat-
ically precise measure of the importance of an observation to forming a prediction, as well 
as fit, which measures a specific prediction’s reliability. They show how their relevance-based 
approach to prediction identifies the optimal combination of observations and predictive 
variables for any given prediction task, thereby presenting a unified alternative to both 
kernel regression and lasso regression, which they call CKT regression. They argue that 
their new prediction system addresses complexities that are beyond the capacity of linear 
regression analysis but in a way that is more transparent, more flexible, and less arbitrary 
than widely used machine learning algorithms. 

We propose a new prediction system based on the concept of statistical rele-
vance. This new approach to prediction requires one to identify a subsample 
of relevant observations from which to form predictions, in which relevance 

has a precise mathematical meaning. Additionally, we introduce the notion of fit, which 
enables one to assess the unique reliability of each individual prediction task. Fit 
also enables one to identify the optimal combination of observations and predictive 
variables for any given prediction task. 

This relevance-based approach to prediction addresses complexities that are 
beyond the capacity of linear regression analysis but in a way that is more transpar-
ent, more flexible, and less arbitrary than widely used machine learning algorithms. 
Moreover, this new prediction system is mathematically cohesive in the following 
sense. It converges to the same prediction result as produced by a linear regression 
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model when its key elements are properly aggregated over the full sample of observa-
tions, and the aggregation of fit across all prediction tasks converges to the classical 
R-squared statistic.

We motivate our new approach to prediction within the context of common predic-
tion practices from the past and the present. We begin with the past by discussing 
linear regression analysis and its limitations when applied to data in which condi-
tionality leads to asymmetry1 between the predictive variables and the outcomes. 
Then we proceed to the present. We first discuss several model-based machine 
learning algorithms that are best characterized as enhancements to linear regression 
analysis. Next, we describe two model-free machine learning algorithms that serve 
as a bridge to our relevance-based prediction system. We proceed to describe our 
relevance-based approach to prediction, and we show how it identifies the optimal 
combination of observations and predictive variables for any given prediction task. 
We refer to this procedure as CKT regression. Finally, we conclude with a summary of 
how relevance-based prediction compares to linear regression analysis and machine 
learning.

THE PAST: LINEAR REGRESSION ANALYSIS

The main approach to statistical prediction in the past was linear regression anal-
ysis, and it is still the dominant approach today for most simple prediction tasks. In a 
very general sense, linear regression analysis focuses on the selection of predictive 
variables that are weighted based on an assumed linear relationship between the 
values for the predictive variables and the outcomes to give a prediction of a new 
outcome given a new set of values for the predictive variables. The weights that are 
applied to the predictive variables are derived by fitting a line through a scatter plot 
of values for the predictive variables and outcomes such that the sum of the squared 
distances of the observations from the line is minimized. Carl Friedrich Gauss, who 
originated this method of least squares circa 1795, proved that it gives a prediction 
whose expected variance from the truth is lower than any other linear and unbiased 
prediction. 

The prediction of a linear regression model with a single predictive variable is 
given by Equation 1. 

= α + β +y xt t t (1)

In Equation 1, t is an error term. The errors are assumed to be centered on zero, 
to have constant variance, and to be uncorrelated, which means that they are spher-
ically distributed. Although it is commonly assumed that the errors must be normally 
distributed, this assumption is unnecessarily strict. 

The method of least squares solves for the parameters a and b that minimize the 
sum of squared prediction errors for the available observations. By considering xt to 
be a row vector containing many variables and b to be a column vector containing an 
equal number of coefficients, this linear regression model can be extended to include 
multiple predictive variables. And by including transformations of the original variables 
as new variables, it can be used to linearize nonlinear relationships. 

Linear regression analysis is a remarkably elegant approach to prediction, but it 
is limited in a significant way. It assumes that the relationship between the predictive 

1 Asymmetry is present when the outcomes associated with a set of circumstances do not tend 
to equal the opposite of the outcomes associated with the opposite circumstances. See Czasonis, 
Kritzman, and Turkington (2022) for further details. 
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variables and the outcomes is static across all observations. We now turn to machine 
learning, which has emerged as the standard approach to prediction in the face of 
more complex relationships. 

THE PRESENT: MACHINE LEARNING

To set the stage for our discussion of relevance-based prediction, it is convenient 
to stratify machine learning algorithms into two types: model-based algorithms that, 
for all intents and purposes, are enhancements to linear regression analysis, and 
model-free algorithms, which serve as a bridge to relevance-based prediction. We 
consider three model-based algorithms: lasso regression, tree-based algorithms, 
and neural networks. We also consider two model-free algorithms: near neighbors 
and Gaussian kernels. 

Model-Based Machine Learning Algorithms

Lasso regression focuses on the selection of predictive variables instead of obser-
vations. Introduced by Tibshirani (1996), its name stands for least absolute shrinkage 
and selection operator. Its goal is to remove or minimize the influence of variables in 
multivariate linear regression that are the least effective in forming the prediction. 
Whereas traditional linear regression analysis seeks coefficients that minimize the 
sum of squared prediction errors, lasso regression also seeks to minimize the sum 
of squared prediction errors but is subject to an additional penalty term that is pro-
portional to the sum of the absolute values of the coefficients. Typically, the input 
variables are standardized so that the coefficients represent equivalent units. For a 
variable with weak predictive capacity, the penalty associated with a nonzero coeffi-
cient may outweigh its ability to reduce prediction errors, in which case the variable 
is deselected. Or the penalty may justify a smaller coefficient than unconditional 
linear regression, in which case the value of the coefficient is reduced. The extent 
of the penalty is determined using an additional analysis. A closely related approach 
called ridge regression penalizes the sum of squared coefficient values instead of 
their absolute values. 

Tree-based algorithms categorize the multivariate input values to a prediction 
using a series of yes/no questions that branch into a structure that looks like a tree. 
Each question asks whether a given input variable is above or below a particular value. 
A prediction is then formed from the simple average of the outcomes of prior observa-
tions in the same category. The complexity of the tree structure must be determined 
using an additional analysis. The localized nature of tree-based predictions gives 
them the ability to reflect nonlinear relationships. Some popular algorithms such as 
random forest (Ho 1995; Breiman 2001) and gradient boosted trees (Friedman 2001) 
implement rules that calibrate multiple trees using subsets of data and aggregate 
their results to form predictions. 

Neural networks are models that process predictive input values through multi-
ple layers of aggregation and transformation to render a prediction. Inspired by the 
structure of the human brain, the nodes in each layer of a neural network apply their 
own weights to combine inputs from the prior layer and further transform the result 
using a nonlinear activation function, which defines the output of a node given a set 
of inputs. Each node’s output then feeds the next layer of nodes, which eventually 
ends in a final layer that aggregates all the prior information into a prediction. These 
models are capable of processing large amounts of complexity if their structure is 
suitably wide (many nodes inside layers) or deep (many layers). The size and struc-
ture of the network is determined using an additional analysis, and there are many 
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calibration parameters to consider. Neural networks have achieved impressive per-
formance across a range of practical applications. Unfortunately, their complexity 
inhibits transparency; it is therefore extremely difficult to understand the underlying 
logic of a neural network’s prediction. 

The common feature of these model-based algorithms is that they all rely on a 
general iterative process, which is first to specify a decision rule, then to calibrate 
the decision rule, and finally to test the decision rule based on the quality of the 
resultant predictions. These steps are repeated multiple times until one is satisfied 
with the results. 

One can construct these model-based algorithms to be extraordinarily flexible in 
how they approach a wide range of complexities, but they are very rigid in one critical 
respect. After their final calibration, they are incapable of adapting to changing circum-
stances. The only way to update these model-based algorithms to respond to new 
circumstances is to repeat the iterative process with the updated sample.2 Model-free 
algorithms, which we next discuss, automatically adapt to changing circumstances. 

Model-Free Algorithms

A distinguishing feature of model-free algorithms is that they form their predic-
tions as weighted averages of prior outcomes. Moreover, the weights that are used 
to form the predictions are revised with each new prediction task. This approach to 
prediction is referred to as kernel regression. Whereas model-based algorithms focus 
on the selection of predictive variables, model-free algorithms focus on the selection 
of observations. 

The near neighbors approach, for example, forms its predictions from localized 
sets of observations with respect to the current values of the predictive variables. 
These algorithms simply exclude those observations that fall outside a chosen range 
around the current values of the predictive variables and weight the surviving obser-
vations of the outcomes equally. 

A slightly more advanced approach to kernel regression is a procedure known as a 
Gaussian kernel. This approach first requires one to calculate the Euclidean distance 
of each observation of the predictive variables from their current observation. Then, 
assuming a normal distribution for these Euclidean distances, it assigns weights in 
proportion to where the distances fall within the distribution. Smaller distances near 
the center of the distribution receive larger weights than distances that lie in the tails. 
The final step is to scale these weights to sum to one and use them to compute a 
weighted average of the associated outcomes to form the prediction. 

These model-free machine learning algorithms share a common feature with 
relevance-based prediction; both approaches form predictions as weighted averages 
of prior outcomes. A key distinction of relevance-based prediction, however, is that 
the weights are theoretically justified. 

THE FUTURE: RELEVANCE-BASED PREDICTION

Our relevance-based approach to prediction is guided by three principles. 

1. A prediction system should be transparent. Transparency promotes intuition
and facilitates interpretation.

2 Some machine learning algorithms allow for online learning, which continually refines the calibrated 
parameters based on new training observations. This process does not require repeating the entire 
training routine. Still, online learning is concerned with incremental updates to the values of model 
parameters, and those parameters are considered to be fixed for the purposes of a given prediction task. 
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2. It should be flexible, by which we mean it should be responsive to changing
circumstances.

3. And it should be nonarbitrary, by which we mean it should be theoretically
justified and mathematically unified. Nonarbitrariness confers legitimacy to
the choices made by a prediction system, so the results are more likely to
reflect underlying relationships as opposed to happenstance.

Linear regression analysis satisfies our third principle, nonarbitrariness, but it 
falls short with respect to our second principle, flexibility, and, to some extent, our 
first principle, transparency. Model-based machine learning algorithms, despite their 
obvious sophistication and ample evidence of empirical success, fail to satisfy any 
of our proposed principles. We do acknowledge, though, that these principles are the 
ones we value. Others may rely on different criteria to judge the merits of alternative 
prediction systems. Or one’s focus may be descriptive rather than predictive, in which 
case model-based machine learning would likely fare better. 

There are three key elements to our relevance-based prediction system: rele-
vance, fit, and situational learning. 

Relevance

Like model-free algorithms, we proceed from the general perspective that a pre-
diction is a weighted average of prior outcomes, as shown in Equation 2. 

∑=y w yt it ii
ˆ (2)

Our challenge is to produce weights that render the prediction effective. As we 
just discussed regarding kernel regression, we could use proximity to weight the 
outcomes, which is a step in the right direction. Nonetheless, these localization 
algorithms are arbitrary. We propose, instead, a nonarbitrary solution for comput-
ing the weights to be applied to prior outcomes, which is relevance. Like kernel 
regression, relevance also considers the similarity of prior observations to current 
circumstances, but it defines similarity more broadly than simple proximity. Moreover, 
relevance measures similarity in a way that is theoretically justified. And of critical 
importance, relevance also considers the informativeness of prior observations as 
well as current circumstances, again in a way that is theoretically justified. Equation 3 
shows how similarity and informativeness are combined to determine relevance.  
We denote current circumstances as a row vector, xt, and the circumstances of a 
given prior observation as a row vector, xi.

= + +r sim x x info x x info x xit i t i t( , )
1
2

( ( , ) ( , )) (3)

In Equation 3, similarity and informativeness are computed as Mahalanobis dis-
tances rather than absolute distances or Euclidean distances:3

= − − Ω − ′−sim x x x x x xi t i t i t( , )
1
2

( ) ( )1 (4)

= − Ω − ′−info x x x x x xi i i( , ) ( ) ( )1 (5)

3 For information about the derivation of the Mahalanobis distance, see Mahalanobis (1927) and 
Mahalanobis (1936).
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Here, x  is the average of X, and Ω-1 is the inverse covariance matrix of X. All 
else being equal, observations that are like current circumstances and different from 
average are more relevant than those that are not. 

It is very important to note that this measure of relevance, and thus the weights 
of prior observed outcomes for Y, does not yet incorporate any information from Y. 
Relevance is determined using only the set of predictive variables contained in X. 

As we emphasized earlier, this definition of relevance is not arbitrary. The use of 
the Mahalanobis distance follows from two keystones of statistical reasoning: the 
central limit theorem and information theory. The central limit theorem holds that 
the sum or average of many independent random events is approximately normally 
distributed, so long as each underlying event comes from a distribution with finite vari-
ance. Therefore, even nonnormal processes give rise to aggregate phenomena that 
are normally distributed. The normal distribution is also the best-motivated starting 
point from the perspective of information theory because it has the maximum entropy 
(the least amount of assumed prior knowledge) of any distribution given a specified 
variance. The relative likelihood of an observation xi from a multivariate normal dis-
tribution is proportional to the exponential of a negative Mahalanobis distance: 

∝
− − Ω − ′−

likelihood x ei

x x x xi i

( )
1
2

( ) ( )1

(6)

Information theory, created by Claude Shannon (1948), holds that the information 
contained in an observation is the negative logarithm of its likelihood. It therefore 
follows that the information contained in a point from a normal distribution is propor-
tional to a Mahalanobis distance:

∝ − Ω − ′−information x x x x xi i i( ) ( ) ( )1 (7)

We can also justify the nonarbitrariness of relevance in the following sense. 
As we show in the appendix, a relevance-weighted average of prior outcomes for 
the full sample yields a prediction that is precisely equivalent to the prediction that 
results from a fitted ordinary least squares linear regression model applied to the 
circumstances, xt. 

Just as kernel regression refines a prediction by focusing on local observations, 
relevance-based prediction refines a prediction by focusing on the most relevant 
observations, as determined by X. Forming a prediction from a subsample of the 
most relevant observations is called partial sample regression. As we show in the 
appendix, these weights always sum to one. 

= +
λ
−

δ − ϕw
N n

r r rit psr it it sub

1
1

( ( ) ),

2

(8)

In Equation 8, d(rit) is a censoring function that equals 1 if rit ≥ r* and 0 otherwise. For 
notational concision, we write the number of observations for which d(rit) = 1 as n = Sid(rit) 

and the proportion of all observations for which d(rit) = 1 as 
n
N

ϕ = . In addition, we write 

the subsample average of relevance over the retained observations as = Σ δr
n

r rsub i it it

1
( ) . 

Finally, we include a term λ = σ σ =
−

Σ
−

Σ δ/
1

1
/

1
1

( )2
,

2
,

2 2 2

N
r

n
r rr full r partial i it i it it , which, to the 

extent it differs from 1, compensates for a bias that would otherwise arise from 
focusing on a small subsample of highly relevant observations. The predictions that 
result from these partial sample regression weights share the theoretical justifica-
tion of linear regression analysis, but unlike linear regression analysis, they allow for 
multivariate asymmetry. 
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To summarize:

§	In a very general sense, we should think of a prediction as a weighted average
of prior outcomes.

§	Rather than weight the prior outcomes based on proximity to current circum-
stances, as in a kernel regression, relevance-based prediction weights them
based on a theoretically justified quantity called relevance.

§	An observation’s relevance equals its similarity to current circumstances
measured as the negative of half the Mahalanobis distance from current cir-
cumstances plus the average of its informativeness and the informativeness
of current circumstances, both measured as Mahalanobis distances from the
average of the observations.

§	Relevance is not arbitrary. Multivariate normal distributions are well motivated
by the central limit theorem, and we know that the relative likelihood of an
observation from a multivariate normal distribution is proportional to the
exponential of a negative Mahalanobis distance. And from information theory,
we know that the information contained in an observation is the negative
logarithm of its likelihood. Therefore, the information contained in a point on
a normal distribution is proportional to a Mahalanobis distance. Moreover, a
weighted average of prior outcomes across a full sample, in which the weights
are relevance, gives the same prediction as a linear regression equation.
Relevance-based prediction and linear regression analysis, therefore, are
mathematically unified.

§	When faced with asymmetry, we may be able to improve a prediction’s reli-
ability by censoring observations that are less relevant. Forming a prediction
from a subsample of the most statistically relevant observations is called
partial sample regression.

We now turn to the second key element of relevance-based prediction, which is fit.

Fit

Fit is a critical component of relevance-based prediction. It reveals how much 
confidence we should assign to a specific prediction task, separately from the overall 
confidence we have in the associated prediction model, and it enables us to deter-
mine the optimal threshold for the subsample of relevant observations for each 
prediction task. 

Here is how to think about fit. Consider a pair of observations that go into a 
prediction task. Each observation comprises a relevance weight and an outcome. 
We are interested in the alignment of the weights of the two observations with their 
outcomes. But we must standardize them by subtracting from them the average value 
and dividing by variance—in essence, converting them to z-scores. We then measure 
their alignment by taking the product of the standardized values. If this product is 
positive, the weights are aligned with the outcomes, and the larger the product, the 
stronger the alignment. We perform this calculation for every pair of observations 
in our sample of size N. Also, it is important to note that all the formulas we have 
thus far considered for the weights rely only on X; they do not make use of any of 
the information in previously observed outcomes, Y. To determine fit, however, we 
must also consider Y. We express fit as a pairwise sum that involves the relevance 
of weights and outcomes for both observations in a pair. 
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∑∑=
−

fit
N

r w w r y yt it jt i jji

1
( 1)

( , ) ( , )2 (9)

In Equation 9:

=
− −

σ
r w w

w w w w
it jt

it jt

w

( , )
( )( )

2 (10)

=
− −

σ
r y y

y y y y
i j

i j

y

( , )
( )( )

2 (11)

From Equations, 9, 10, and 11, we can restate fit in terms of normalized z-scores: 

∑∑=
−

fit
N

z z z zt w w y yji it jt i j

1
( 1)2

(12)

Or as follows in Equation 13:

∑∑=
− σ σ

− − − −fit
N

w w w w y y y yt
w y

it jt i jji
t

1
( 1)

( )( )( )( )2 2 2 (13)

If we reference each observation’s predictive contribution as ψ = − −w w y yi it i( )( ), 
we can also express fit as 

= ′ψ ′ ψ
− σ σ

fit
Nt

N N

w yt

1 1
( 1)2 2 2 (14)

or as

= ρfit w yt t( , )2 (15)

or as

=
σ

fit
info y

t
t

wt

(ˆ )
2 (16)

Although we compute fit from the full sample of observations, the weights that 
determine fit vary with the threshold we choose to define the relevant subsample. 
Because we focus the subsample on more relevant observations, we should expect 
the fit of the subsample to increase, but we should also expect more noise as we 
shrink our number of observations. The fit across pairs of all observations in the full 
sample N implicitly captures this trade-off by overweighting more relevant observa-
tions and underweighting less relevant observations accordingly.

Like relevance, fit is not at all arbitrary. In the appendix, we show from first prin-
ciples why the sum must be normalized by a divisor of (N - 1)2. Moreover, Czasonis, 
Kritzman, and Turkington (2022) showed that the informativeness-weighted average 
fit across all prediction tasks in a sample equals precisely the classical R-squared 
statistic in the case of full-sample linear regression. 

∑=
−

R
T

info x fitt tt

1
1

( )2 (17)
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This convergence of fit to R-squared reveals an intriguing insight. Without any 
knowledge of the success of a model’s predictions, fit reveals beforehand the degree 
of confidence we should attach to a specific prediction task. Without fit, our only indi-
cation of confidence is the average quality of all predictions, which is determined after 
the predictions are made and which across the full sample aggregates to R-squared. 
Therefore, not only can we use fit to assess how much confidence we should attach 
to a prediction task individually; we can use fit to compute R-squared. 

To summarize:

§	The fit for a given prediction task equals the average of the alignment of
standardized weights and standardized outcomes expressed as products,
across every pair of observations in a sample N. Equivalently, it equals the
squared correlation between weights and outcomes.

§	Fit reveals, in advance of forming a prediction, how much confidence we
should attach to a given prediction task.

§	Fit is not arbitrary. The information-weighted average fit across all prediction
tasks in a sample N converges to the classical R-squared statistic.

Situational Learning

We have thus far shown how to form a prediction, given asymmetric data, as a 
relevance-weighted average of prior outcomes. And we have shown how we can use 
fit to guide our confidence in a specific prediction task. But we have left unanswered 
how to determine the threshold for the subsample of relevant observations. We have 
only noted that a partial sample regression prediction depends on the choice of a 
parameter, r*, which is the censoring threshold for relevance. 

=w g x X rit psr psr t( , , ),
* (18)

We, therefore, turn to the third key feature of relevance-based prediction, which 
is situational learning, to show how to select the censoring threshold for relevance. 

Rather than choose r* arbitrarily, we use fit to learn the value of r* that optimizes 
a trade-off between decreasing the fraction of observations included in the predic-
tion, ϕ, and increasing subsample fit among the n noncensored observations, fitt,sub. 
In other words, we iteratively raise the parameter r*, which is equivalent to shrink-
ing the relevant subsample to size n, until we have maximized fit. From our earlier 
discussion, we know that fit measured from a sample N automatically captures the 
trade-off between subsample fit fitt,sub and noise, but it may be useful to consider 
this trade-off in more detail. 

Recall from Equation 8 that we write the weights for partial sample regression 

as = +
λ
−

δ − ϕ
1

1
( ( ) ).,

2

w
N n

r r rit psr it it sub  Fit, as defined earlier, is the fit between weights 

and outcomes for a given sample of size N. However, expressing fit in terms of key 
subcomponents lends further intuition and allows us to make more general use of the 
concept. Note that wpsr, y, rt, and d(rt) are all series that are defined for all N obser-
vations. As the threshold r* rises to focus on a highly concentrated subsample, n, 
ϕ, l2, and c2 all decrease, which unambiguously penalizes fit. The fit measured over 
a sample N will rise if the subsample fit increases by more than this sample size 
reduction penalty. 

=
ϕλ
− ϕ





 −

−
δfit w y

c
N

N
n

n
fit r r yt psr t t t( , )

1 1
1

( ( ) , )
2

2 (19)
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Note that we assume the subsample fit in our notation in Equation 19 is normal-
ized according to the subsample size, n. 

∑∑δ =
−

δ δfit r r y
n

r r r r r r y yt t t it it jt jt i jji
( ( ) , )

1
( 1)

( ( ) , ( ) ) ( , )2 (20)

The term c2 is defined as follows:

c
r n

n
sub

r partial 1
2

2

,
2=

σ −
(21)

The term c2 is related to the variance of rt in the subsample around the subsample 

average, rsub. In fact, that variance equals precisely 
n

n
rr partial sub1,

2 2σ −
−

, and because 

this quantity must always be greater than zero, it follows that 
n

n
rr partial sub1,

2 2σ >
−

 and, 

therefore, c2 < 1. We ignore the pathological case where rt has zero variance. 

CKT Regression and the Codependence of Observations and Variables

Kernel regression and partial sample regression both focus on the selection of 
observations and form predictions as a weighted average of prior observations. They 
differ only in how the weights are selected. It is, therefore, straightforward to show 
how we could modify kernel regression to converge to relevance-based prediction. 

Let us consider a Gaussian kernel. With this approach, we form the weights 
as a function of proximity to current circumstances. Specifically, we measure each 
observation’s Euclidean distance from current circumstances. Then, assuming these 
distances are normally distributed, we assign weights in proportion to where the 
distances fall within the distribution. 

With the following adjustments, we convert a kernel regression to a partial sample 
regression.

1. First, we substitute similarity for simple proximity by using the Mahalanobis
distance instead of the Euclidean distance to measure differences from
current circumstances.

2. Then we add the informativeness of the observations and the informativeness
of the current circumstances, both measured as Mahalanobis distances from
the average, and we properly weight these three components.

3. Finally, we identify the optimal subsample of relevant observations by itera-
tively raising the relevance threshold r* until we have maximized fit.

Lasso regression is used to select predictive variables. Just as fit allows us to 
identify the optimal subsample of relevant observations for a given set of predictive 
variables, we can also use fit to select variables. Rather than fixing the predictive 
variables and using fit to select the best observations for a given prediction task, 
we can fix our sample of observations and iteratively substitute different combinations 
of predictive variables to maximize fit. By doing so, we present an alternative to lasso 
regression. Like lasso regression, we can consider every combination of predictive 
variables and choose the combination that maximizes fit. Or we can construct prede-
termined sets of predictive variables based on experience and intuition. 

It is important to note that fit is specific to each prediction task, so it may recom-
mend some collections of variables only in rare circumstances. Lasso, by contrast, 
must decide whether to always or never use a given variable. This fit-based alternative 
to lasso regression, therefore, has the flexibility to adapt to changing circumstances. 
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Thus far, we have described these methods as though they would be applied 
independently. But why should we expect a given sample of observations to be most 
suitable for all combinations of predictive variables, and why should we expect a fixed 
set of predictive variables to be equally effective across all observations? Each spe-
cific prediction task has an optimal combination of observations and predictive vari-
ables. Given this codependence, the selection of observations and variables should 
be carried out jointly by maximizing fit as a simultaneous function of observations 
and variables. By doing so, we replace both kernel regression and lasso regression 
with a single process, which we refer to as CKT regression. 

To summarize:

§	Partial sample regression requires us to determine a threshold value for r*
to determine the size of the relevant subsample from which to form our pre-
diction.

§	As we raise the threshold value for r*, we increase the fit of the subsample,
which all else being equal, should increase our confidence in our prediction
task. However, by reducing the subsample size, we introduce noise which
counters the benefit of better fit.

§	We iteratively raise the relevance threshold r* to maximize fit, which captures
the penalty associated with the decrease in sample size from N to n.

§	We also use fit in the same way to identify the optimal collection of variables.
Because the choice of observations and choice of variables are codependent,
we should vary them simultaneously to maximize fit. This procedure is called
CKT regression and presents a unified alternative to both kernel regression
and lasso regression.

EMPIRICAL ILLUSTRATION

We conduct a simulation to demonstrate the intuition and efficacy of CKT regres-
sion in a case in which data emanate from multiple regimes. In general, we assume 
that one does not know the form of the true data-generating process for the prediction 
problem at hand, but for the purposes of this simulation we specify a known data-gen-
erating process. We specify a two-regime Markov model in which the multivariate 
distribution for X and the function Y = f(X) are regime dependent. We assume two 
regimes, with persistence probabilities equal to 80% and 60%, respectively, meaning 
that the probability of regime 1 in the next period is 80% when currently in regime 1, 
and the probability of regime 2 is 60% when currently in regime 2. We express the 
transition matrix of the state variable as: 

Transition
0.8 0.2
0.4 0.6

=






(22)

We define four individual variables that comprise our multivariate predictive obser-
vations X, and we refer to them as A,B,C,D. Variables {A,B} comprise a group, and 
variables {C,D} comprise a group. The variables are uncorrelated across groups and 
50% correlated within groups. The correlation matrix does not depend on regimes. 

1 0.5 0 0
0.5 1 0 0
0 0 1 0.5
0 0 0.5 1

ρ =



















(23)
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In regime 1, variables {A,B} are tightly distributed around a positive average, and 
they determine the outcome for Y (they are causally important), whereas variables {C,D} 
are broadly distributed around an average of zero and do not determine the outcome 
for Y (they contribute noise). In regime 2, the variables take on the opposite roles: {C,D} 
are causally important, and {A,B} contribute noise. We denote these assumptions 
as follows, where Ω is the covariance matrix formed from the appropriate s and r: 

µ = σ = β =(3 3 0 0);    (1 1 3 3);     (1 2 0 0)1 1 1  (24)

µ = σ = β =(0 0 3 3);    (3 3 1 1);     (0 0 1 2)2 2 2  (25)

µ Ω =
µ Ω =







X N if regime

X N if regime

 ~  ( , )        1

 ~  ( , )        2
1 1

2 2

(26)

= β ′ =

= β ′ =







y x if regime

y x if regime
t t

t t

         1

         2
1

2

(27)

To summarize, at any given point in time, two of the variables are causally import-
ant in determining Y, but it is not always the same two. The formula for Y is deter-
ministic if we know the current regime, but the current regime is not known to the 
observer; it must be inferred from the observations of X, which are random. The 
prediction task is to form predictions based on a training sample of realizations for X 
and Y, together with a new set of circumstances xt drawn from a testing sample. We 
simulate 500 observations for training. We also simulate 500 separate observations 
for testing, but for ease of illustration we extract every 10th observation to obtain a 
more compact set of 50 test samples that span both regimes. 

For each prediction task, we compute the fit for CKT regression predictions based 
on different collections of variables (all four, {A,B} only, and {C,D} only) and different 
thresholds for filtering observations according to relevance (setting r* equal to a percen-
tile value of relevance in increments of 0.1 from 0 to 0.9). We select the specification 
with the greatest fit and evaluate this prediction against the actual testing outcome. 

In our out-of-sample test, the correlation between CKT regression predictions 
and actual outcomes was 89%. This result was notably superior to traditional linear 
regression, which had a correlation of 54%. 

Exhibit 1 shows which variables were included and what fraction of observations 
were included in each of the 50 test predictions. It also reports the fit for each prediction. 

The behavior of the prediction routine is intuitive, and it highlights both the trans-
parency and the flexibility of our approach. Regime 1 is more persistent and therefore 
occurs more frequently (76% compared to 24% for regime 2). The predictions more 
often rely on variables {A,B}, which are important in regime 1. Moreover, these pre-
dictions typically include 50% to 100% of the observations, which is in line with the 
proportion that emanate from regime 1 in the training sample. By contrast, the pre-
dictions rely on variables {C,D} less often, and when they do, they usually focus their 
attention on 20% of the observations, in line with the actual occurrence of regime 2 
in the training sample. The predictions occasionally resort to a full-sample regression 
prediction, including every variable and every observation. It makes sense to use this 
approach when the randomly observed values of xt are ambiguous. 

Exhibit 1 shows that fit varies substantially across predictions. Its largest values 
coincide with predictions from regime 1, which is intuitive because this regime has 
the benefit of more evidence in the historical sample. It is important to remember that 
we compute fit in advance of observing an actual outcome for Y in the testing sample. 
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Nonetheless, we verify that fit provides useful information about the confidence of 
each prediction. Across the 50 prediction tasks, the absolute value prediction errors 
are -43% correlated with fit. In other words, predictions with higher fits resulted in 
lower realized prediction errors out-of-sample. 

COMPARATIVE SUMMARY 

We now compare linear regression analysis, machine learning, and relevance-based 
prediction based on the three principles we proposed earlier: transparency, flexibility, 
and nonarbitrariness.

Linear Regression Analysis

Transparency. Although linear regression analysis shows the influence of the pre-
dictive variables on the prediction, it is silent about how each observation informs 
the prediction. Moreover, the R-squared statistic only reveals the efficacy of predic-
tions on average and does not provide information about the fit that underlies each 
individual prediction. 

Flexibility. Linear regression analysis is inflexible. It assumes a fixed set of obser-
vations and variables for all prediction tasks. It is, therefore, incapable of address-
ing conditional relationships, and it ignores the codependence of observations and 
variables.

Nonarbitrariness. Linear regression analysis is theoretically justified. Carl Friedrich 
Gauss showed that the prediction from ordinary least squares is closer to the truth 
than any other unbiased prediction from a linear model. 

Machine Learning

Transparency. Although model-free machine learning algorithms are transparent 
in that they disclose the effect of each observation on the prediction, the most 
powerful model-based algorithms are opaque and hard to interpret. They may imple-
ment conditional reasoning, but they do not explain or justify it transparently. The 
logic is concealed in the black box that results from previous training and testing. 
It is, therefore, impractical to gauge the effect of the observations on the predictions. 

EXHIBIT 1
Fraction of Observations Included, Variables Included, and Fit

0%

20%

40%

60%

80%

100%

1 11 21 31 41

0%

20%

40%

1 11 21 31 41

{A,B,C,D}

{A,B}

{C,D}

Fit
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Flexibility. Because model-based machine learning algorithms are prespecified, 
the only quantity that varies along with the prediction task is xt. The model parame-
ters are constant, and no new outcomes are observed prior to the prediction for yt. 
Therefore, the flexibility in machine learning algorithms must be governed by their 
internal logic and prespecified by a fixed set of calibrated parameters. They do not 
adapt their approach to prediction circumstances, nor do they recognize the code-
pendence of observations and variables. 

Nonarbitrariness. Machine learning contains many disparate approaches, and their 
use is guided by empirical efficacy rather than by a core set of theoretical principles. 
It is therefore difficult to know whether the solutions result from historical happen-
stance or underlying relationships.

Relevance-Based Prediction

Transparency. Relevance-based prediction is highly transparent. It reveals the 
comparative importance of each observation and shows precisely how it informs the 
prediction. Relevance-based prediction also quantifies the confidence one should 
attach to each unique prediction task beforehand, in contrast to linear regression 
analysis, which assigns the same confidence to all prediction tasks ex post based on 
the average quality of the regression model. Finally, relevance-based prediction shows 
explicitly how subsample fit and noise separately determine the relevance threshold 
that determines the optimal subsample for each prediction task.

Flexibility. Relevance-based prediction is specifically designed to adapt to asym-
metry by imposing conditionality on the prediction process. Moreover, it automatically 
adapts to new prediction circumstances and explicitly considers the codependence 
of observations and variables. 

Nonarbitrariness. Relevance-based prediction is theoretically justified by both the 
central limit theorem and information theory. Moreover, it is mathematically unified in 
the following sense. When applied to the full sample of observations, relevance-based 
prediction yields precisely the same prediction as linear regression analysis. And an 
informativeness-weighted average of the fit of all a model’s prediction tasks equals 
the classical R-squared statistic. Finally, fit may be used to rigorously determine the 
optimal combination of observations and predictive variables.

CONCLUSION

We propose a new approach to prediction based on relevance, which gives a 
measure of the importance of an observation to a prediction, and fit, which measures 
the reliability of a specific prediction task. 

We show how relevance-based prediction addresses the codependence of obser-
vations and variables by using an algorithm called CKT regression. This algorithm 
identifies the optimal combination of observations and predictive variables for any 
given prediction task, thereby presenting a single alternative to both kernel regression 
and lasso regression. 

We argue that relevance-based prediction compares favorably to linear regression 
analysis because it is more transparent and because, unlike linear regression anal-
ysis, it efficiently adapts to asymmetry between predictive variables and outcomes. 

We also claim that relevance-based prediction has important advantages with 
respect to machine learning. It is more transparent, more flexible, and less arbitrary 
than commonly used machine learning algorithms. 
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APPENDIX 

RESULT 1: PARTIAL SAMPLE REGRESSION WEIGHTS SUM TO ONE

Partial sample regression adds the average outcome to scaled deviations of out-
comes from average:

∑= +
−

δ λ −y y
N

N
n

r r y yt i it it iˆ
1

1
( ) ( )2

(A1)

Delta is a censorship function wherein d(rit) = 1 if rit > 0, otherwise d(rit) = 0, and 
= Σ δ( )n ri it . 

We want to determine weights of the form = Σy w yt i i iˆ  to express these predictions. 
First, we express y  as a sum over individual outcomes:

∑ ∑∑= +
−

δ λ



 −

−
δ λy

N
N

n
r r y

N
N

n N
r r yt i it it i ji it it jˆ

1
1

1
( )

1
1

1
( )2 2 (A2)

To proceed, we flip the i and j index notations in the second term (the double sum) 
to get

∑ ∑ ∑= +
−

δ λ



 −

−
δ λy

N
N

n
r r y

N
y

n
r rt i it it i ii j jt jtˆ

1
1

1
( )

1 1
1

( )2 2 (A3)

∑= +
−

λ δ −
−

λ



y

N n
n
n

r r
n

n
N

r yt it it sub ii
ˆ

1 1
1

( )
1

1
2 2 (A4)

∑= +
λ
−

δ − ϕ






y
N n

r r r yt it it subi iˆ
1

1
( ( ) )

2

(A5)

Thus, with ϕ = n/N we have weights defined without reference to yi: 

w
N n

r r rit psr it it sub

1
1

( ( ) ),

2

= +
λ
−

δ − ϕ (A6)

When we average across all weights, we once again find that Σ =wi it 1 because the 
two terms inside the parentheses average to the same amount:

∑ ∑δ = δ = ϕ
N

r r
n
N n

r r rit iti iti it sub

1
( )

1
( ) (A7)

∑ ϕ = ϕ
N

r rsubi sub

1
(A8)

This result also applies to traditional full-sample linear regression, which is a special 
case of partial sample regression. 
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RESULT 2: RELEVANCE-WEIGHTED AVERAGE OF PRIOR OUTCOMES 
EQUALS LINEAR REGRESSION PREDICTION

If we include every observation in a partial sample regression, the weights from 
Equation 8 may be written in a more simplified form: 

= +
−

w
N N

rit linear it

1 1
1, (A9)

The prediction equation corresponding to full-sample linear regression equals

∑= +
−

−
=

y y
N

r y yt iti

N

iˆ
1

1
( )

1
(A10)

Expanding out the expression for relevance gives 

∑ (= + −
−

Ω − ′ −−
=

y y x x
N

x x y yt t i

N

i iˆ ( )
1

1
) ( )1

1
(A11)

To streamline the arithmetic, we recast this expression using matrix notation:

= −X X xd N( 1 ) (A12)

= − β + β − − ′ ′−y y x x x x X X X yt t t d d d Nˆ ( )( ) 11 (A13)

where

β = ′ ′−X X X Yd d d( ) 1 (A14)

Noting that ′Xd N1 equals a vector of zeros because Xd represents attribute devia-
tions from their own respective averages, we get the familiar linear regression prediction 
formula 

= − β + βy y x xt tˆ ( ) (A15)

α = − βy x( ) (A16)

= α + βy xt tˆ (A17)

RESULT 3: WHY FIT IS NORMALIZED BY THE SQUARE 
OF N MINUS 1

The definition of fit in terms of weights and outcomes equals

∑∑=
−

fit w y
N

r w w r y yt ji it jt i j( , )
1

( 1)
( , ) ( , )2

(A18)

For notational convenience, we suppress the subscript t moving forward. Writing out 
the deviations from average inside the relevance functions and grouping the terms that 
depend on i versus j, we have 

∑ ∑=
σ σ −

− −



 −

− −



fit w y

N
w w y y

N
w w y yt

w y
ii i jj j( , )

1 1
1

( )( )
1

1
( )( )2 2 (A19)
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It now suffices to show that either of these sums, in isolation, should be normalized 

by 
−N
1

1
. We proceed by writing the average weight as a sum. 

∑∑=
−

−



 −Sum

N
w

N
w y yi aai i

1
1

1
( ) (A20)

This expression is equivalent to summing everything over a and diving everything by N:

∑∑=
−

− −Sum
N N

w w y yi aai i

1
( 1)

( )( ) (A21)

Likewise, for y

∑∑∑=
−

− −Sum
N N

w w y yi abai i b

1
( 1)

( )( )2 (A22)

In the triple sum, there are N3 terms for (wi - wa)(yi - yb). However, some of the terms 
are trivially equal to zero and hence contain no information. The trivially zero terms occur 
when a = i or b = i. There are N ways for a = i and N ways for b = i to occur, so there are 
N2 trivially zero terms in total. We must omit the trivially zero terms from the normalizing 
factor, so we end up with N3 - N2 = N2 (N - 1) terms. 

RESULT 4: PARTIAL SAMPLE REGRESSION FIT

We want to evaluate the fit for partial sample regression weights: 

∑∑=
−

fit w y
N

r w w r y yt psr ji it psr jt psr i j( , )
1

( 1)
( , ) ( , )2 , ,

(A23)

= +
λ
−

δ − ϕw
N n

r r rit psr it it sub

1
1

( ( ) ),

2

(A24)

We start by considering the relevance of a pair of weights:

=
− −

σ
( , )

( )( )
, ,

, ,
2r w w

w w w w
it psr jt psr

it psr jt psr

wpsr

(A25)

=

λ
−







δ − ϕ δ − ϕ

σ
r w w

n
r r r r r r

it jt

it it sub jt jt sub

wpsr

( , )
1

( ( ) )( ( ) )
2 2

2 (A26)

The variance of these weights (across all N observations) may be expressed as a 
sum over all the weights i for current circumstances t:

∑σ =
λ
−





 −

δ − ϕ
1

1
1

( ( ) )2
2 2

2

n N
r r rw it it subipsr

(A27)
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Substituting this term into the denominator from earlier and indexing to k for clarity 
gives 

∑
=

δ − ϕ δ − ϕ

−
δ − ϕ

r w w
r r r r r r

N
r r r

it jt
it it sub jt jt sub

k kt kt sub

( , )
( ( ) )( ( ) )

1
1

( ( ) )2
(A28)

Note that this expression includes the censored observations. Their deviations are 
negative, and in the context of fit they are positively aligned with other censored obser-
vations, and they are negatively aligned with retained observations. Therefore, even the 
censored observations are important to the evaluation of fit. 

A nice feature of this approach is that it inherently accounts for the smaller number of 
observations present in a highly focused, censored sample. A narrow sample is required 
not only to have a strong relationship among the retained observations, but it must also 
exhibit dispersion in outcomes for pairs of in versus out observations. 

Using shorthand of D for the denominator, fit equals

∑∑=
−

δ − ϕ δ − ϕfit w y
D N

r r r r r r r y yt psr ji it it sub jt jt sub i j( , )
1

( 1)
( ( ) )( ( ) ) ( , )2

(A29)

We expand out the product, noting that the two cross-terms are identical because 
they are specified symmetrically with respect to i and j. Therefore, we write them as two 
times one of the terms. 

∑∑=
−

δ δ − δ ϕ + ϕfit w y
D N

r r r r r r r r r y yt psr it it jt jt it it sub subji i j( , )
1

( 1)
( ( ) ( ) 2 ( ) ( ) ) ( , )2

2 (A30)

We break apart the sums as follows:

∑∑

∑ ∑
(

)
=

−
δ δ

− δ ϕ + ϕ

( , )
1

( 1)
( ) ( ) ( , )

(2 ( ) ( ) )

2

2

fit w y
D N

r r r r r y y

r r r r z z

t psr ji it jt it jt i j

i it it sub sub y yji j
(A31)

We know that Σ =zj y j
0, so we are left only with the first term. Multiplying by

σ −
σ −

n

n
r

r

( 1)
( 1)

 
2 2

2 2

allows us to write

=
σ −

−
δfit w y

D
n
N

fit r r yt psr
r

t t t( , )
( 1)
( 1)

( ( ) , )
2 2

2 (A32)

( )
( )

=
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−
δfit w y

D
N
N

n
n

n

N
fit r r yt psr

r
t t t( , )

1
1

( ( ) , )
2 2

2

2

2

2

2 (A33)

= ϕ
σ

−






−



 δfit w y

D
N

N
n

n
fit r r yt psr

r
t t t( , )

1
1

( ( ) , )2
2 2 2

(A34)

Here, we denote the partial sample fit, which completely ignores censored observa-
tions and is normalized according to the partial sample n, as

∑∑δ =
−

δ δfit r r y
n

r r r r r y yt ji it jt it jt i j( ( ) , )
1

( 1)
( ) ( ) ( , )2

(A35)
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We see that the numerator of the overall fit includes ϕ2. We now expand the  
denominator: 

∑=
−

δ − ϕD
N

r r r
k kt kt sub

1
1

( ( ) )2 (A36)

∑=
−

δ − δ ϕ + ϕD
N

r r r r r rkt kt kt kt sub subk

1
1

( ( ) 2 ( ) ( ) )2 2 2 (A37)

∑ ∑=
−

δ − ϕ
−

δ +
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ϕD
N

r r r
N

r r
N

N
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1
1

( ) 2
1

1
( )
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( )2 2 2 (A38)

Expressing in terms of N and n as desired gives us

∑ ∑=
−

−
−

δ − ϕ
−
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N

N
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n
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n
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N
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−
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n
n

N
N

r
N

N
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n
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We substitute the expression for the denominator into the formula for fit and simplify 
to arrive at
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=
ϕλ
− ϕ
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−
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c
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N
n

n
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1 1
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2

2 (A45)

where

=
σ −

c
r n

n
sub

r partial 1
2

2

,
2 (A46)

The adjusted fit of a partial sample regression is directly related to the fit associated 
with the subsample in isolation. However, the other terms unambiguously decrease the 
adjusted fit when the threshold for relevance is raised. 
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