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Investable and Interpretable 
Machine Learning for Equities
Yimou Li, Zachary Simon, and David Turkington

KEY FINDINGS

n	 The authors argue that for machine learning models to be useful for stock selection, they 
should be investable, interpretable, and interesting.

n	 The authors focus on liquid US stocks and calibrate models for a reasonable turnover, use 
model fingerprint to interpret machine learning logics, and show results that outperform 
simpler models.

n	 By adjusting the goal and time horizon of model predictions, the authors evaluate how 
people can impart to models discretionary knowledge and preferences.

ABSTRACT

The authors propose three principles for evaluating the practical efficacy of machine learning 
for stock selection, and they compare the performance of various models and investment 
goals using this framework. The first principle is investability. To this end, the authors focus 
on portfolios formed from highly liquid US stocks, and they calibrate models to require 
a reasonable amount of trading. The second principle is interpretability. Investors must 
understand a model’s output well enough to trust it and extract some general insight from 
it. To this end, the authors choose a concise set of predictor variables, and they apply a 
novel method called the model fingerprint to reveal the linear, nonlinear, and interaction 
effects that drive a model’s predictions. The third principle is that a model’s predictions 
should be interesting—they should convincingly outperform simpler models. To this end, 
the authors evaluate out-of-sample performance compared to linear regressions. In addi-
tion to these three principles, the authors also consider the important role people play by 
imparting domain knowledge and preferences to a model. The authors argue that adjusting 
the prediction goal is one of the most powerful ways to do this. They test random forest, 
boosted trees, and neural network models for multiple calibrations that they conclude are 
investable, interpretable, and interesting.

There are few barriers to entry in applying machine learning to stock selection. 
Most researchers and investors have access to plentiful data, open source 
code libraries, and ample computing power. Authors such as Rasekhschaffe and 

Jones (2019), Gu, Kelly, and Xiu (2020), and others1 have reported incredibly strong 

1 A growing amount of literature has reported strong out-of-sample performance when applying 
machine learning to asset pricing predictions. Bryzgalova, Pelger, and Zhu (2020), Aldridge and Avel-
laneda (2019), Fischer and Krauss (2018), and Moritz and Zimmerman (2016), for example, reported 
superb portfolio returns in backtests when applying machine learning techniques such as neural network 
and tree-based models to form predictions.
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performance for machine learning in hypothetical backtests. Despite such promis-
ing results, practitioners must overcome reasonable fears that backtest results do 
not fully represent the costs of trading, that their advantage will be competed away 
when such techniques become mainstream, that research results have a positive 
bias whereby only the best findings are reported, or that historical results reflect 
data errors or unscrupulous research methods. Moreover, investors may worry that 
machines could load up on concentrated sources of risk, fail to appreciate structural 
shifts in markets, or commit some other fatal flaw in reasoning—all of which may go 
undetected until it is too late. We believe that investment strategies based on machine 
learning have a lot to offer, but we argue that these strategies are not particularly 
useful in practice unless they are both investable and interpretable. They must also 
be interesting, in the sense that they reliably outperform simpler alternatives, but for 
practitioners, this third condition is only relevant once the first two are met. 

To build strategies that are investable, we focus on a subset of liquid securities 
with large market capitalizations, and we ensure that trading does not exceed a rea-
sonable amount. Therefore, we have little interest in models that mostly predict the 
returns of small or illiquid stocks or those that exploit short-term pricing effects that 
are prohibitively costly to trade. 

To build strategies that are interpretable, we use a concise set of predictor vari-
ables, and we decompose the outputs of complex models into subcomponents using 
a method called the model fingerprint. These components may be compared to other 
models, theories, and hypotheses, which we argue is one of the most crucial parts 
of the modeling process. 

Machine learning models consume a narrow set of data. They do not have the full 
range of experience that a person brings to the field of investing, such as intuition 
from life experience and financial theory. This domain knowledge is just as important 
as the model’s technical specifications. People can inform models by choosing which 
data to include and by accepting or rejecting a model’s logic based on its coherence 
with other theories and ideas. 

Another way to impart knowledge and preference to a model is to adjust its 
predictive goal. Machine algorithms are laser-focused. If the goal is to predict stock 
returns in excess of the market index, the model will shift its focus away from market 
timing and toward stock selection. If the goal is to predict 12-month returns instead 
of 1-month returns, the model will search for persistent relationships that reduce 
turnover. In this way, we can direct our model’s attention to whichever areas of the 
market present the best opportunities. 

In our empirical analysis, we find compelling results for machine learning applied 
to stock selection. However, the benefits we show are modest compared to many 
other research papers, probably because of our emphasis on investability and inter-
pretability. Investors should approach machine learning with reasonable expectations. 
As competitive markets evolve and adapt, we should not expect the same opportuni-
ties for superior risk-adjusted returns to last forever. One is right to be suspicious of 
results that look too good to be true. The applications we test could be described as 
intelligent factor investing. They use historical data to derive rules for (linear) factor 
preferences, nonlinear relationships, interactions among multiple factors, and ways 
to rescale these effects when there are regime shifts or sector-specific consider-
ations. In our view, the performance enhancement from machine learning is more 
incremental than revolutionary. 

We structure the remainder of the article as follows. First, we describe the data 
and the model fingerprint that provides interpretability. Next, we discuss our approach 
to modeling selection, calibration, and training. We present results for investment 
strategies based on a range of machine learning models, focusing on the key princi-
ples that results should be investable, interpretable, and interesting. We then expand 
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on these results by changing the prediction goal from total returns to excess returns 
and from short-term returns to longer-term returns. The fi nal section concludes. 

DATA AND METHODOLOGY

Our ultimate goal is to build portfolios. To do that, we use machine learning to 
forecast returns. We then form portfolios of stocks with the highest or lowest fore-
casted returns. With this two-step process, we keep portfolio construction simple 
and interpretation straightforward. Our predictions come from supervised learning, 
in which we defi ne inputs (X) and a target (Y). We structure the problem as a panel 
regression, in which a given model is tasked with predicting every stock at every 
point in time. 

Prediction Inputs

Our investment universe consists of stocks in the S&P 500 between December 
1992 and September 2020. We limit our attention to this set of companies because 
they represent the most liquid and accessible securities in one of the largest equity 
markets. We consider a concise list of predictive variables based on theory and 
intuition. As shown in Exhibit 1, the predictors fall into two groups: company-level 
attributes, which are measured for every company every month, and regime indica-
tors, which are measured once per month. These inputs align with the type of data 
a human analyst or traditional regression model might use. 

Security attributes are based on data from Refi nitiv, and regime variables are 
obtained from State Street Global Markets. We include the economic sector of each 
company, based on the Global Industry Classifi cation System (GICS), using a collec-
tion of dummy variables: They assume a value of 1 for companies in that sector and 
zero otherwise, which allows the models to favor certain factors in some industries 
and not others. To prevent outliers from distorting the results, we transform all of the 
attribute values (other than the sector indicators) into cross-sectional ranks. 

EXHIBIT 1
Prediction Inputs

Type

Regime

Attribute

Category

Company
Value

Past Price
Trends

Riskiness

Return On
Equity

Operating
Model

Economic
Regimes

Sector

Variable

1. Size

3. Short-Term Mean Reversion

7. Volatility

8. Beta

9. Leverage

10. Pro�tability

11. Investment

12. Dividend Yield

14. Financial Turbulence

13. Economic sector

15. Recession Likelihood

16. Recession Likelihood (Shift)

4. Momentum

5. Sector Momentum

6. Long-Term Mean Reversion

2. Value

Definition

Market capitalization

Last month return

Trailing year volatility

Trailing year market beta

Assets/Equity

EBITDA/Assets

YoY asset growth

Dividend yield

Mahalanobis distance of sector returns

Dummy variables for sector classi�cation

KKT index built from macro variables

Standardized one-year change in KKT index

Last year return/Last month return

Momentum—Average momentum of sector

Last four-year return/Last year return

Price-to-book ratio

Motivation and Related Literature

Banz (1981)

Jegadeesh and Titman (1993)

Ang et al. (2006)

Fama and MacBeth (1973)

Bhandari (1988)

Balakrishnan, Bartov, and Faurel (2010)

Cooper, Gulen, and Schill (2008)

Litzenberger and Ramaswamy (1982)

Kritzman and Li (2010)

Kinlaw, Kritzman, and Turkington (2021)

Kinlaw, Kritzman, and Turkington (2021)

Jegadeesh (1990)

Moskowitz and Grinblatt (1999)

Jegadeesh and Titman (1993)

Rosenberg, Reid, and Lanstein (1985)
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Prediction Target

Our base-case model predicts each stock’s total return for the following month. 
Later, we present results in which we vary the prediction target. First, we introduce 
various benchmarks and target excess returns. We consider the capital asset pricing 
model (CAPM; Sharpe 1964) as well as a six-factor model composed of the Fama and 
French (2015) five factors plus momentum (Jegadeesh 1990). We create these target 
returns by regressing each stock’s trailing one-year returns on the returns of the rel-
evant factors and recording the excess return (regression intercept plus residual) for 
the latest data point. Second, we adjust the time horizon from 1 month to 12 months. 

Model Selection and Calibration

In order of increasing complexity, the models we test are ordinary least squares 
(OLS) linear regression, least absolute shrinkage and selection operator (LASSO), 
random forest, boosted trees, and neural network. It is outside the scope of this 
article to review each model’s theoretical foundation in detail, but we refer the reader 
to prior research and summarize our reason for including them. 

As the workhorse of traditional quantitative finance, OLS is an obvious place to 
start. Its simplicity is both appealing and limiting. LASSO (Tibshirani 1996) attempts 
to improve on OLS by penalizing the total magnitude of beta coefficients; ideally, it 
will identify a subset of the most reliable variables and neutralize the rest. Random 
forest (Hastie, Tibshirani, and Friedman 2008) consists of many individual tree models 
built from randomly selected subsets of the data. Each tree identifies thresholds that 
explain nonlinear patterns in the data, and their votes are aggregated. Boosted trees 
(Friedman 2001) works in a similar fashion, but trees are used iteratively to explain 
relationships that the previous iterations may have missed. This mechanism allows 
the model to find extreme or unusual effects. Neural networks (Goodfellow, Bengio, 
and Courville 2016) are the most complex of this set. They work by applying layers of 
transformation to the inputs, allowing them to capture more intricate dependencies 
among the variables. 

The models require some design decisions, such as the number of predictors  
to be sampled by each tree in a random forest, the number of trees in a boosted 
trees model, and the number of neurons in a neural network. We make these choices 
based on judgment and applied knowledge from other fields. Appendix B describes 
the model specifications in detail. Other parameters, called hyperparameters, are 
calibrated as part of the training process, which we describe next. 

Training and Testing

We split our data into a training period, from December 1992 to December 2014, 
and a testing period, from January 2015 to September 2020. The testing sample 
is not used until after the models have been calibrated on the training sample. This 
single train/test split is overly simplistic because it does not allow the models to 
learn and recalibrate with each passing month. However, it allows us to show the 
intuition of the models more clearly. As a result, our performance estimates may err 
on the conservative side. 

It is helpful to think about the training of a model in two steps. First, we separate 
our panel of training data into 10 non-overlapping blocks of time. We choose a set of 
calibration parameters (hyperparameters) and evaluate the predictive efficacy (using 
mean squared error) of the model trained on every combination of nine time blocks on 
the corresponding remaining blocks. We specify the initial search ranges of calibration 
parameter values and repeat the calibration process in search of the combination of 
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parameter values with the most robust results, as measured by the average mean 
squared error of the validation blocks. This process, called cross validation, simulates 
how the model performs on unseen data that are, essentially, manufactured from 
within the training sample. Second, once we have identified the best calibration, we 
train the models using the best calibration and the entire set of training data. 

The final rule gives a return prediction for any set of input values. Next, we 
describe how we interpret the internal logic of such a rule. 

Interpretation with Model Fingerprints

An issue especially relevant to investment applications of machine learning is 
interpreting and understanding machine learning models. We apply the model finger-
print (fingerprint for short) proposed by Li, Turkington, and Yazdani (2020) as a frame-
work for machine learning interpretation. The fingerprint method is a model-agnostic 
tool that provides insights into how predictors contribute to predictions at both global 
and local levels. Model fingerprint isolates the linear and nonlinear effects for each 
variable and the interaction effects for each pair of variables. These quantities are 
measured with partial predictions that vary one (or two) predictors at a time. The fin-
gerprint then states the relative importance of each component in the same units as 
the predictions themselves. In other words, for each predictor, it shows the average 
extent to which changes in the predictor influence the prediction globally. In addition, 
when given a specific observation, the fingerprint can map predictor values to their 
partial predictions, thereby attributing a local prediction to each univariate variable, 
pairwise interaction effect, and the residual higher-order effects.

Similar to methods devised to estimate Shapley values for machine learning 
models, such as Shapley sampling (Štrumbelj and Kononenko 2013) and kernelSHAP 
(Lundberg and Lee 2017), the fingerprint calculates partial predictions by isolating a 
subset of predictors and sampling the complement set from the marginal distribution. 
This is the interventional conditional distribution presented by Janzing, Minorics, and 
Blöbaum (2020), which argues that such an approach is conceptually desirable for 
causal inference. 

Unlike methods that estimate Shapley values, the fingerprint is based on the 
notion of partial dependence introduced by Friedman (2001). As a result, the finger-
print is more efficient computationally because it does not require computing the 
prediction outcome of all possible coalitions of variables. Although it is computation-
ally efficient, the fingerprint’s novel local prediction attribution method adheres to 
desirable properties of symmetry, dummy, additivity, and completeness, as defined 
by Shapley (1953).

§	Symmetry: If two predictor variables are interchangeable in the model, the 
fingerprint values of the two predictors are the same.

§	Dummy: If a variable is a dummy that does not change the model prediction 
in any way when added to the model, its fingerprint value should be 0.

§	Additivity: If two models are combined such that the overall prediction is the 
sum of each subprediction, the fingerprint value of the overall model equals 
the sum of the fingerprint values corresponding to each submodel. 

§	Completeness: By construction, the fingerprint attribution of a local prediction 
sums up to the original prediction. 

The fingerprint’s local attribution, like Shapley estimation methods, converges to 
classical Shapley values when sampling from the marginal distributions and does not 
create unrealistic data points. It also augments the classical Shapley with interaction 
attributions.
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To illustrate the procedure, imagine we are applying it to a linear model. We 
trace out the partial dependence function for a variable by setting it equal to many 
different values and, each time, computing the average prediction the model would 
make when combined with every available combination of the remaining variables. 
For a linear regression, this process will trace a straight line with slope equal to the 
regression beta. We then compute the mean absolute deviation of the linear predic-
tions around their average value. Variables that cause large prediction changes are 
more influential than those that cause small prediction changes (note that variables 
are inherently standardized because we consider their full range of values, or at least 
a representative sample). 

For most machine learning models, though, the procedure traces a nonlinear 
pattern. In this case, the fingerprint fits a straight line to the curve and computes 
the mean absolute deviation for that linear effect, as well as the mean absolute 
deviation of the full effect in excess of the linear component, which is the nonlinear 
component. Finally, the fingerprint captures the interaction effects for each pair of 
variables by computing the partial predictions for every combination of two variables 
in excess of the predictions those variables would give in isolation. The interaction 
effect equals the mean absolute deviation of these values. The linear, nonlinear, and 
interaction effects are all measured in comparable units that are the units of the 
model’s predictions. 

For categorical variables, such as economic sectors that are nominal, partial 
predictions can be calculated with the same procedure by iterating through all cate-
gories of the variable. The decomposition of linear and nonlinear effects by line fitting, 
however, is not applicable to such nominal variables that lack intrinsic ordering. We 
compute the mean absolute deviation of the sector variable’s partial predictions 
around their average value, weighted by the frequency of each category in the training 
set. Like the fingerprint calculations of other variables, such measurements capture 
how influential the categorical sector variable is in the overall model predictions 
and are directly comparable because they remain in the same units as the model’s 
predictions. We report the univariate effect of the sector variable in the linear effect 
category of the prediction fingerprints reported in this article.

For investment applications, Li, Turkington, and Yazdani (2020) also defined a 
performance fingerprint. The calculation takes the subcomponents of the prediction 
fingerprints, forms portfolios based on their various combinations, and distills cumu-
lative returns for the linear, nonlinear, and interaction components. 

BASE-CASE RESULTS

In this section, we present results for a base case in which models are trained 
to predict the total returns of each stock. The models are calibrated on panel data of 
monthly stock returns from December 1992 through December 2014, as described 
earlier. Once each model’s predictive rule is set, we do not alter it during the testing 
process. We simply feed in the data for each stock in a given month (accounting for 
publication lags to represent data that would have been available at the time), obtain 
its return predictions, rank stocks accordingly, and form a portfolio that is long the 
20% of stocks with the highest forecasted returns and short the 20% of stocks with 
the lowest forecasted returns. We assign equal weights to stocks within the long 
and short baskets. 

Exhibit 2 shows the annualized return, volatility, return-to-risk ratio, and average 
turnover for each strategy. For reference, the act of liquidating all long and short 
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positions in a portfolio and replacing them with new stocks would incur a turnover of 
2× (we defi ne the long and short baskets each as having weights that sum to 100%). 
Thus, if we assume, say, 20 bps of roundtrip transaction cost to substitute a position, 
the annual cost of the neural network strategy would be 4.8 times 0.20%, or 0.96%. 
As noted earlier, we only consider stocks in the S&P 500 universe, which have large 
capacity and are reasonably liquid. Although we report our results as long–short port-
folios, they could be implemented as smaller overweight and underweight positions 
relative to a benchmark that does not require any actual shorting. In this case, the 
return, risk, and turnover would decrease in proportion to the smaller-sized tilts, and 
the return-to-risk ratio would remain constant. 

We would like to highlight a few observations based on Exhibit 2. First, consider 
the linear strategies. “Equal factor weights” predicts returns as a simple average of 
the 12 security attributes (it does not include the sector dummy variables). It per-
forms reasonably well in spite of its simplicity (although later, we show that it fails 
for other prediction objectives). In theory, OLS could have selected equal weights, yet 
it found a different solution that ended up performing worse out of sample. It may 
be overfi tting to factors that performed well in the training data and underfi tting the 
nonlinear nuance of the factors. LASSO sidesteps OLS’s overfi tting problem by relying 
on a more robust subset of predictors, but it still underperforms equal weighting. 

Now, let’s consider the more sophisticated machine learning models. Random 
forest stands out with less trading (turnover is 1.9×) and higher risk (volatility is 
19.3%). It beats equal weighting in terms of raw returns, but its risk-adjusted returns 
are weak. Because its nature is to average across many fi ne-grained partitions of 
the data, random forest tends to rely on small nuances. By contrast, boosted trees 
and neural networks fi nd more dramatic interaction effects. Both models trade more 
aggressively than random forest and generate higher returns. Neural network outper-
forms boosted trees by a small margin in every metric. 

Interpretation

We now use the fi ngerprint methodology to explain the behavior of each machine 
learning model. Exhibit 3 shows the fi ngerprints for random forest, boosted trees, 
and neural network. We do not report the fi ngerprints for the linear models, but we 
note that they would contain linear effects only, with nonlinear and interaction terms 
equal to zero. It is important to remember that the prediction fi ngerprints derive from 
the training data only—the testing sample is not used in any way here. 

It is clear from Exhibit 3 that the models learn different rules, even though they 
train on the same data. No model is perfect, so there is value in diversity. The lin-
ear effects are broadly similar for boosted trees and neural network, which offers a 
degree of comfort: Both load heavily on momentum and value, along with a collection 

EXHIBIT 2
Performance of Base-Case Models in the Testing Sample (January 2015–September 2020)

Model

Equal Factor Weights
OLS
LASSO
Random Forest
Boosted Trees
Neural Network

Return

1.7%
0.0%
0.5%
2.5%
3.8%
4.0%

Risk

8.4%
6.8%
7.1%

19.3%
11.1%
10.2%

Ratio

0.20
–0.01
0.06
0.13
0.34
0.39

Turnover

3.1
3.2
3.6
1.9
4.9
4.8
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of other factors.2 Random forest is quite different, however, focusing on volatility and 
beta. Boosted trees has the most nonlinearity, and neural network has the most 
interactions. In Exhibit 3, we summarize interactions at the variable level, attributing 
half of each pairwise effect to its component parts.3 As we might expect, the regime 
variables mainly condition the effects of the attributes, rather than suggesting strong 
directional effects of their own. 

It is notable that the short reversion factor plays only a small role here. Prior 
machine learning studies, such as those by Gu, Kelly, and Xiu (2020) and Cong et al. 
(2020), ranked short-term reversal among the most important factors. We suspect 
the difference comes from our focus on investability. The reversal factor is consistent 
with frictions to trading: It is empirically robust for small stocks but mostly absent 
for large ones.4 Exploiting this factor requires frequent trading in less-liquid stocks, 
which is costly to implement. Our models do not fi nd it particularly useful. 

We can dig deeper into the logic of the machine learning models by studying their 
interaction effects. Exhibit 4 lists the three most important interactions for each 

2 The effects occur on different scales across the three models. All of the effects are in comparable 
units because the models are tasked with predicting the same returns. The magnitudes are larger for 
neural network because they often cancel each other out owing to interactions.

3 Higher-order effects also exist among collections of three or more variables, but they are too 
numerous to list. In general, we fi nd that pairwise interactions account for a large share, if not most, 
of the total interaction effects for this application.

EXHIBIT 3
Prediction Fingerprints
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model, which in this case all happen to involve regime variables. We also list the 
three most important interactions that do not involve regime variables. 

Random forest uses the recession indicator to condition beta and volatility, which 
are its dominant linear effects. Boosted trees conditions classic factors on market 
turbulence and discriminates across sectors in applying short reversion, momen-
tum, and value. In addition to turbulence, neural network adjusts its preference for 
momentum stocks based on sector, long-term reversion, and beta. 

In Exhibit 5, we map out two interaction effects for every possible combination 
of the variables. Panel A shows that boosted trees views low-volatility stocks more 
favorably when market turbulence is high, but when turbulence is low, its preference 
fl ips. This logic operates for the bottom quintile of low-volatility stocks, and it changes 
abruptly above that threshold. For the top two quintiles of high-volatility stocks, the 
relationship is more muted and in the opposite direction. Panel B shows that neural 
network has the most conviction in long-term reversion for stocks with low (negative) 
momentum. The model takes an asymmetric view: Reversion has a stronger pull when 
prices are depressed than when they are elevated. 

Whether a model’s predictions work well or not is a separate question. The 
performance fi ngerprint addresses this issue by attributing portfolio performance to 
each predictive component. Consider neural network as an example. Exhibit 6 shows 
the cumulative returns (in log scale) for the linear, nonlinear, and interaction effects, 
which add up to the model’s total return. 

In the training sample, the linear effect provides buy-and-hold exposure to a col-
lection of factors, while interactions add substantial value. The interactions appear 
to act as a hedge, rising during risk events such as the dotcom crash in 2002–2003 
and the global fi nancial crisis in 2008. In the testing sample, the linear component 
performed poorly but was more than offset by the interactions, leading to a net gain 
for the strategy. Nonlinear effects contributed positive returns. 

In Exhibit 7, we report the correlations between each model’s subcomponent 
returns. The numbers in bold compare components within models, and the shaded 
boxes compare models within components. In the training sample, all three linear 
components are highly correlated. Boosted trees and neural networks also perform 
similarly in their nonlinear and interaction effects. These models must be picking 
many of the same stocks, or at least stocks with similar characteristics. The bottom 
left portion of the exhibit shows that each model’s interactions act as a hedge to its 
linear component. Most of these relationships persist in the testing sample, with the 
notable exception that random forest seems to stray from the other models. 

EXHIBIT 4
Most Important Interactions
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GOAL SETTING

Changing the prediction goal is a simple, direct, and effective way to adjust a 
model’s behavior toward a set of prior beliefs and preferences. For example, if we do 
not believe that market timing is a good idea, we can remove it from consideration by 
asking the model to predict returns in excess of the market. Or, instead of imposing 
constraints to control trading costs, we can ask the model to predict longer-horizon 
returns that are inherently more stable. We can learn even more about the models 
by watching how they adapt to these changing objectives. 

We vary the objective along two dimensions. First, we redefi ne the goal as returns 
in excess of a one-factor (CAPM) model or a six-factor model composed of the Fama 
and French (2015) fi ve factors plus momentum (Jegadeesh 1990). Second, we rede-

EXHIBIT 5
Sample Pairwise Effects (in basis points)

EXHIBIT 6
Performance Fingerprint for Neural Network
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fi ne the goal as 12-month returns instead of 1-month returns. Exhibit 8 shows the 
return-to-risk ratios in the testing sample for every combination of these goals. 

We evaluate each model relative to its stated benchmark. For the total return 
objective, we compute annualized return divided by annualized volatility. For the CAPM 
and six-factor objectives, we compute return and volatility in excess of an ex post 
regression-fi tted benchmark. Full results are presented in Appendix A. 

We introduce a slightly different rebalancing rule for the 12-month case. Instead 
of completely revising the weights each month, we revise 1/12th of the portfolio on 
a rolling basis. This approach aligns the holding period to the prediction horizon by 
ensuring that each set of chosen stocks stays in the portfolio for a full year, while 
also allowing the composition to gradually evolve from month to month. 

Equal weighting all factors generates modest outperformance against a total 
return or CAPM target, but it fails to outperform the six-factor benchmark. OLS and 
LASSO have erratic performance, and their attempts to outperform the six-factor 
benchmark are especially misguided. The machine learning models added value con-
sistently in this out-of-sample test. However, we stress that the magnitude of their 
performance advantage is smaller than what is reported in many other articles. In our 
view, the magnitude of the outperformance we show is realistic for an implementable 
and interpretable strategy.

EXHIBIT 7
Monthly Return Correlations for Performance Fingerprint Components
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The 12-month models have substantially lower turnover, with a maximum of 0.9× 
per year, compared to 4.9× per year for the 1-month equivalent (see Appendix A for the 
full set of results). Exhibit 9 shows the prediction fi ngerprints for the 12-month CAPM 
models. Comparing these results to the one-month total return model in Exhibit 3, 
we see some intuitive shifts. Although sector and profi tability remain important for 
neural network, the model has shifted emphasis from momentum at both stock and 
sector levels to attributes such as beta and value among all linear effects. Neural 
network prefers the slower-moving economic conditions (recession likelihood) to the 
faster-moving fi nancial turbulence indicator. Interestingly, random forest picks up 
many more interactions at the 12-month horizon. Boosted trees looked more like 
neural network for one-month total returns, but now its linear effects tend to align 
with random forest.

CONCLUSION

We propose a practical implementation of machine learning for stock selection, 
in which machine learning serves as a complement to good judgment, rather than 
a substitute for it. We posit that, from a practitioner’s standpoint, complex models 
must be investable, interpretable, and interesting. As a result, our analysis differs 
from prior research in a few key ways. We focus on a narrow universe of stocks for 
investability. We focus on a narrow universe of predictors for interpretability. And we 
apply a method called the model fi ngerprint to reveal the logic behind predictions and 
the dynamics that drive performance. 

There are many ways to extend and apply this framework. For example, it can 
be used for other asset classes or market segments. The models can be calibrated 
more often, confi gured with different goals, and fed different inputs. The fi ngerprints 
for interpretation can be used to study other machine learning models, and they can 
be adapted to explain—in real time—the rationale for any individual model predic-
tion. The predictions can feed more-sophisticated portfolio construction models, or 

EXHIBIT 8
Return-to-Risk Ratios in the Testing Sample (January 2015–September 2020)
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they can be directly combined with a qualitative forecasting process. Alternatively, 
the models might be used as a robustness check to intuition or as a way to foster 
an open dialog about investment ideas. 

Machine learning lies somewhere between linear regression, which is understood 
through traditional statistics, and human judgment, which is understood through 
shared experience and discussion. By keeping models (relatively) simple and striving 
to understand them in new and better ways, we believe machine learning can become 
a practical tool for stock selection as opposed to just a curiosity. 

APPENDIX A

ADDITIONAL RESULTS

Exhibit A1 shows the annualized return, risk, return-to-risk ratio, and turnover for 
strategies with various performance objectives. Return and risk are measured in excess 

EXHIBIT 9
Prediction Fingerprints (targeting 12-month returns above CAPM)
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of the fi tted linear regression exposure of each time series to the market factor (for 
CAPM) or the Fama and French (2015) fi ve-factor model plus momentum (for six factor). 

Exhibit A2 shows the prediction fi ngerprints for random forests, boosted trees, and 
neural networks with different prediction objectives. All prediction fi ngerprints are derived 
from the training data only, thereby refl ecting how the models consider predictors when 
the predictive rules are formed. The linear, nonlinear, and interaction effects are measured 
in comparable units, the units of the model’s predictions, so they refl ect the average 
extent to which a predictor infl uences model predictions.

Exhibit A3 lists the three most important interactions for random forests, boosted 
trees, and neural networks with various prediction objectives. To account for the fact that 
regime variables participate in the majority of pairwise interaction terms, we also list the 
three most important interactions that do not involve regime variables.

APPENDIX B

MODEL SPECIFICATIONS

REFERENCES

Aldridge, I., and M. Avellaneda. 2019. “Neural Networks in Finance: Design and Performance.” The 
Journal of Financial Data Science 1 (4): 39–62.

EXHIBIT A1
Model Performance in the Testing Sample (January 2015–September 2020)
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EXHIBIT A2
Model Prediction Fingerprints

Panel A: Total Return (1-Month)
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Panel B: Total Return (12-Month)
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EXHIBIT A2 (continued)
Model Prediction Fingerprints

Panel C: CAPM (1-Month)

Random Forest Boosted Trees Neural Network

0.0% 0.3% 0.6%

Size

Value

Short Reversion

Momentum

Sector Momen.

Long Reversion

Volatility

Beta

Leverage

Pro�tability

Investment

Dividend Yield

Sector

Turbulence

Recession

Recession (Shift)

0.0% 0.3% 0.6%

Size

Value

Short Reversion

Momentum

Sector Momen.

Long Reversion

Volatility

Beta

Leverage

Pro�tability

Investment

Dividend Yield

Sector

Turbulence

Recession

Recession (Shift)

0.0% 0.5% 1.0%

Size

Value

Short Reversion

Momentum

Sector Momen.

Long Reversion

Volatility

Beta

Leverage

Pro�tability

Investment

Dividend Yield

Sector

Turbulence

Recession

Recession (Shift)

Panel D: CAPM (12-Month)

Random Forest Boosted Trees Neural Network

0.0% 0.8% 1.6%

Size

Value

Short Reversion

Momentum

Sector Momen.

Long Reversion

Volatility

Beta

Leverage

Pro�tability

Investment

Dividend Yield

Sector

Turbulence

Recession

Recession (Shift)

0.0% 0.8% 1.6%

Size

Value

Short Reversion

Momentum

Sector Momen.

Long Reversion

Volatility

Beta

Leverage

Pro�tability

Investment

Dividend Yield

Sector

Turbulence

Recession

Recession (Shift)

0.0% 1.8% 3.6%

Size

Value

Short Reversion

Momentum

Sector Momen.

Long Reversion

Volatility

Beta

Leverage

Pro�tability

Investment

Dividend Yield

Sector

Turbulence

Recession

Recession (Shift)

(continued)
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EXHIBIT A2 (continued)
Model Prediction Fingerprints

Panel E: Six-Factor (1-Month)

Random Forest Boosted Trees Neural Network

0.0% 3.0% 6.0%

Size

Value

Short Reversion

Momentum

Sector Momen.

Long Reversion

Volatility

Beta

Leverage

Pro�tability

Investment

Dividend Yield

Sector

Turbulence

Recession

Recession (Shift)

0.0% 4.0% 8.0%

Size

Value

Short Reversion

Momentum

Sector Momen.

Long Reversion

Volatility

Beta

Leverage

Pro�tability

Investment

Dividend Yield

Sector

Turbulence

Recession

Recession (Shift)

0.0% 4.0% 8.0%

Size

Value

Short Reversion

Momentum

Sector Momen.

Long Reversion

Volatility

Beta

Leverage

Pro�tability

Investment

Dividend Yield

Sector

Turbulence

Recession

Recession (Shift)

Panel F: Six-Factor (12-Month)

Random Forest Boosted Trees Neural Network

0.0% 2.0% 4.0%

Size

Value

Short Reversion

Momentum

Sector Momen.

Long Reversion

Volatility

Beta

Leverage

Pro�tability

Investment

Dividend Yield

Sector

Turbulence

Recession

Recession (Shift)

0.0% 2.0% 4.0%

Size

Value

Short Reversion

Momentum

Sector Momen.

Long Reversion

Volatility

Beta

Leverage

Pro�tability

Investment

Dividend Yield

Sector

Turbulence

Recession

Recession (Shift)

0.0% 2.0% 4.0%

Size

Value

Short Reversion

Momentum

Sector Momen.

Long Reversion

Volatility

Beta

Leverage

Pro�tability

Investment

Dividend Yield

Sector

Turbulence

Recession

Recession (Shift)

Linear Nonlinear Interactions
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EXHIBIT A3
Most Important Interactions

Panel A: Total Return (1-month)

Panel B: Total Return (12-month)

Panel C: CAPM (1-month)

Panel D: CAPM (12-month)

Panel E: Six-Factor (1-month)

Panel F: Six-Factor (12-month)

Top 3 Overall

Top 3 (without regime variables)

Top 3 Overall

Top 3 (without regime variables)

Top 3 Overall

Top 3 (without regime variables)

Top 3 Overall

Top 3 (without regime variables)

Top 3 Overall

Top 3 (without regime variables)

Top 3 Overall

Top 3 (without regime variables)

Random Forest

Beta, Recession (shift)
Volatility, Recession (shift)
Beta, Turbulence

Beta, Volatility

Beta, Yield

Beta, Sector

Value, Sector
Investment, Value
Value, Volatility

Value, Sector
Investment, Value
Value, Volatility

Beta, Recession (shift)
Beta, Recession
Volatility, Recession (shift)

Beta, Volatility

Beta, Yield
Beta, Sector

Beta, Recession
Sector, Recession
Beta, Yield

Beta, Yield
Beta, Sector
Value, Sector

Momentum, Sector
momentum
Momentum, Value

Momentum, Sector

Momentum, Sector
momentum
Momentum, Value

Momentum, Sector

Momentum, Sector
momentum
Momentum, Sector

Sector Momentum,
Sector

Momentum, Sector
momentum
Momentum, Sector

Sector Momentum,
Sector

Boosted Trees

Size, Turbulence
Value, Turbulence
Sector, Turbulence

Short Reversion,
 Sector
Momentum, Sector

Value, Sector

Leverage, Sector
Sector, Recession
Value, Sector

Leverage, Sector
Value, Sector
Yield, Sector

Beta, Recession (shift)
Short Reversion, Sector
Beta, Turbulence

Short Reversion,
 Sector
Value, Sector
Beta, Sector

Sector, Recession
Value, Sector
Yield, Sector

Value, Sector
Yield, Sector
Leverage, Sector

Momentum, Sector
momentum
Momentum, Short
Reversion
Momentum, Sector

Momentum, Sector
momentum
Momentum, Short
Reversion
Momentum, Sector

Momentum, Sector

Momentum, Short
Reversion
Beta, Sector

Momentum, Sector

Momentum, Short
Reversion
Beta, Sector

Neural Network

Volatility, Turbulence
Size, Turbulence
Momentum, Turbulence

Momentum, Sector

Long Reversion,
 Momentum
Beta, Momentum

Beta, Momentum
Beta, Yield
Size, Recession

Beta, Momentum
Beta, Yield
Momentum, Sector
Momentum

Size, Turbulence
Volatility, Recession
Momentum, Sector

Momentum, Sector

Short Reversion, Sector
Momentum, Pro�tability

Beta, Recession
Beta, Yield
Beta, Value

Beta, Yield
Beta, Value
Volatility, Yield

Leverage, Yield

Short Reversion,
Turbulence
Leverage, Value

Leverage, Yield

Leverage, Value

Momentum, Yield

Beta, Volatility

Beta, Momentum

Size, Volatility

Beta, Volatility

Beta, Momentum

Size, Volatility
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Returns.” The Journal of Finance 61 (1): 259–299.

EXHIBIT B1
Random Forest

NOTES: The number of trees is not tuned when training random forests because increasing this number in a random forest does not 
lead to overfi tting. We fi x the number of trees at 2,500 because we observe that increasing beyond this number merely leads to an 
increase in computational time with minimal changes in the predictions.

Target

Total return, 1 month
Total return, 12 months
CAPM, 1 month
CAPM, 12 months
Six-factor, 1 month
Six-factor, 12 months

Number of
Variables to Sample

3
8
4
7
4
7

Minimum Number
of Observations in a Leaf

1,000
1,100

800
100

60
50

Maximum Number
of Splits

11
60
11

110
300
170

EXHIBIT B2
Boosted Trees

NOTES: Unlike the random forest setting, increasing the number of trees in a boosted trees model will rapidly lead to overfi tting. We 
keep the maximum number of splits in our boosted trees fi xed at 10 to avoid overfi tting too early in the training process.

EXHIBIT B3
Neural Network

NOTES: The total number of layers is fi xed at three for our neural network models. The amount of data in this research is not suitable 
for training a deep network. We observe that changing the number of layers in this research will quickly lead to the model being stuck 
at local minima and thus yielding trivial solutions.

Target

Total return, 1 month
Total return, 12 months
CAPM, 1 month
CAPM, 12 months
Six-factor, 1 month
Six-factor, 12 months

Number of
Variables to Sample

5
6
5
5
5
6

Minimum Number
of Observations in a Leaf

650
300
615
515
400
500

Number
of Trees

40
85
56
51

100
100

Target

Total return, 1 month
Total return, 12 months
CAPM, 1 month
CAPM, 12 months
Six-factor, 1 month
Six-factor, 12 months

Number of Nodes
in a Layer

7
11

4
10
14
12

Weight/Bias 
Optimization Method

Resilient back-propagation
Bayesian regularization
Resilient back-propagation
Bayesian regularization
Gradient descent with momentum
Bayesian regularization

Epoch

82
253
154
211

1,001
232
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