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The Stock-Bond Correlation
Megan Czasonis, Mark Kritzman, and David Turkington

KEY FINDINGS

n	 The stock-bond correlation is a critical component of many investment activities, such 
as forming optimal portfolios, designing hedging strategies, and assessing risk.

n	 Most investors estimate the correlation of longer-interval returns by extrapolating the 
correlation of past shorter-interval returns, but this approach is decidedly unreliable. 

n	 By applying recent advances in quantitative methods, it is possible to generate reliable 
predictions of the correlation of longer-horizon stock and bond returns.

ABSTRACT

Investors rely on the stock-bond correlation for a variety of tasks, such as forming optimal 
portfolios, designing hedging strategies, and assessing risk. Most investors estimate the 
stock–bond correlation simply by extrapolating the historical correlation of monthly returns; 
they assume that this correlation best characterizes the correlation of future annual or 
multiyear returns, but this approach is decidedly unreliable. The authors introduce four 
innovations for generating a reliable prediction of the stock-bond correlation. First, they show 
how to represent the correlation of single-period cumulative stock and bond returns in a 
way that captures how the returns drift during the period. Second, they identify fundamental 
predictors of the stock-bond correlation. Third, they model the stock–bond correlation as 
a function of the path of some fundamental predictors rather than single observations. 
Finally, they censor their sample to include only relevant observations, in which relevance 
has a precise mathematical definition.

TOPICS

Portfolio management/multi-asset allocation, risk management, statistical methods*

Investors rely on the stock-bond correlation for a variety of activities, such as form-
ing optimal portfolios, designing hedging strategies, and assessing risk. For these 
activities, investors are usually, or at least often, interested in the correlation of 

longer-horizon returns such as annual or multiyear returns. Most investors predict the 
correlation of longer-interval stock and bond returns by extrapolating the historical 
correlation of shorter-interval returns, but this approach is decidedly unreliable. We 
introduce several innovations for generating a reliable prediction of the correlation of 
longer-interval stock and bond returns, and we document each innovation’s marginal 
contribution to improving the predictive power of our approach.

We first introduce the notion of a single-period correlation. This innovation reme-
dies the dual problem that correlations estimated from shorter-interval returns differ 
significantly from correlations estimated from longer-interval returns for the same 
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historical sample and that the correlation of longer-interval returns varies through 
time. Next, we identify fundamental predictors of the stock-bond correlation, which 
capture conditions both in the real economy and the fi nancial markets. We then 
address the fact that the stock-bond correlation depends not only on point-in-time 
observations but also on the path of certain economic variables as well. Finally, we 
apply a recent innovation called partial sample regression, which isolates relevant 
observations from the historical sample and uses a crafty mathematical equivalence 
to derive a better prediction of the stock-bond correlation.

Although this overall process is complex, we demonstrate its value by docu-
menting the incremental improvement in forecast reliability as we proceed from 
naïve extrapolation (which is common practice) to the full application of all these 
innovations. 

SINGLE-PERIOD CORRELATION

Our focus is to forecast the correlation of stock and bond returns for annual or 
multiyear horizons; we assume that investors care less about how the main growth 
and defensive components of their strategies co-move month to month and more 
about how they co-move over the duration of the investment horizon. To illustrate our 
approach, we focus on the correlation of fi ve-year returns. We use the S&P 500 Index 
to estimate stock returns and the Bloomberg US Long Treasury Index to estimate 
bond returns.1

The conventional approach for forecasting the correlation of fi ve-year stock and 
bond returns is to extrapolate the correlation of monthly returns from a recent his-
torical sample. This approach assumes that correlations are invariant to the return 
interval used to estimate them. However, this invariance would only be true if the 
returns of stocks and bonds were each serially independent at all lags and if their 
lagged cross correlations were also zero at all lags. These implicit assumptions are 
not borne out by historical evidence, as shown in Exhibit 1. 

Exhibit 1 offers stark evidence that the stock-bond correlation is far from stable 
across return intervals. This instability may arise, for example, if short-term returns 

1 Prior to 1973, we use the Ibbotson Stock Index and the Ibbotson Treasury Bond Index to estimate 
stock and bond returns, respectively.

EXHIBIT 1
Stock–Bond Correlation (January 1926–November 2019)

NOTE: The correlations of annual, 3-year, and 5-year returns are estimated from overlapping monthly observations.
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respond similarly to a given factor, whereas longer-term returns drift apart in response 
to a different, lower frequency infl uence. Equation 1 shows how the correlation of 
longer-interval returns is mathematically related to the correlation of shorter-interval 
returns.
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where (x x ,  y y )t tx ,t tx ,q 1x ,q 1x , t ty )t ty )q 1y )q 1y ) ρ +(xρ +(xt tρ +t t+ +x ,+ +x ,  y+ + y+ +x ,+ +x ,  y+ + yt t+ +t tx ,t tx ,+ +x ,t tx ,x ,q 1x ,+ +x ,q 1x , t t+ +t t + + x , x ,+ +x , x ,  y  y+ + y  y +t t+t t+ −x ,+ −x ,q 1+ −q 1x ,q 1x ,+ −x ,q 1x ,x ,+ +x ,+ −x ,+ +x ,x ,q 1x ,+ +x ,q 1x ,+ −x ,q 1x ,+ +x ,q 1x , + −y )+ −y )q 1+ −q 1y )q 1y )+ −y )q 1y ) is the correlation of the cumulative continuous 
returns of x and y over q periods. 

The numerator of Equation 1 equals the covariance of the assets, taking lagged 
cross correlations into account; the denominator equals the product of the assets’ 
standard deviations, taking their autocorrelations into account. To apply this equation, 
we would need to estimate the autocorrelations of stocks and bonds at all lags as well 
as their lagged cross correlations at all lags, which would be unduly cumbersome.2

Alternatively, we can calculate the correlation of independent fi ve-year returns, 
but this approach has two drawbacks. First, the estimate of the correlation is highly 
sensitive to the start date of the fi rst fi ve-year observation. And second, the stock-
bond correlation is unlikely to be constant across such a long history. These problems 
might lead us to consider using overlapping observations to calculate the stock-bond 
correlation, but this approach, although mitigating the start-date problem, is still 
subject to issues of time variation.

Therefore, the fi rst order of business is to develop an approximation of the 
correlation of fi ve-year stock and bond returns that captures the extent to which 
these returns move synchronously or drift apart during each fi ve-year period. Just as 
each fi ve-year return for stocks or bonds differs from the long-run average returns, 
the co-movement of stocks and bonds during each fi ve-year period differs from the 
co-movement on average over the long run.

Equation 2 captures the co-movement of the cumulative return of stocks and 
bonds for a chosen fi ve-year period, considering the average co-movement of stocks 
and bonds over the full sample of fi ve-year returns.
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In Equation 2, rs and rb equal the fi ve-year cumulative return of stocks and bonds, 
respectively; µs and µb equal the long-run arithmetic average return of stocks and 
bonds, respectively; and σs and σb equal the standard deviation of the fi ve-year stock 
and bond returns, respectively.

We refer to this measure as a single-period correlation because it measures the 
co-movement of the cumulative returns of stocks and bonds for a single fi ve-year 
period rather than the average correlation of fi ve-year returns over the full sample. 
Each single-period correlation will differ from the long-run average correlation based 
on the period-specifi c co-movement of stocks and bonds.

2 See Kinlaw, Kritzman, and Turkington (2014) for more detail about the divergence of high- and 
low-frequency estimation of correlations.
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For example, as shown in Exhibit 2, if the z-scores of stocks and bonds are 
identical for the period, the single-period correlation will equal 1. If they are exactly 
opposite, the single-period correlation will equal −1. If they have the same sign but 
different magnitudes, the single-period correlation will be between 0 and 1. Finally, 
if they have different signs and different magnitudes, the single-period correlation 
will be between −1 and 0. It is important to note that, even though this measure 
relies on means and standard deviations estimated from the full sample of all 
fi ve-year periods, it informs us about the co-movement of stocks and bonds for a 
single fi ve-year period.

The single-period correlation is related to the correlation of a time series 
of stock and bond returns, which is called the Pearson correlation, in a precise 
mathematical way. It equals a weighted average of the single-period correlations 
throughout the sample, in which the weights equal the informativeness of each 
period’s returns. 

 Correlation s b
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Here, N equals the number of return periods in the sample, and Informativenesst 
and Single-period correlationt are based on stock and bond returns ending at time t. 
In this context, informativeness is defi ned as the average of the squared z-scores 
of stock returns and bond returns for a given period. The calculation acknowledges 
that patterns of co-movement among variables are more meaningful when their mag-
nitudes are large because those observations are more likely to refl ect events as 

EXHIBIT 2
Illustration of Single-Period Correlation

NOTES: Average return of stocks and bonds = 7.5% and 2.5%, respectively. Standard deviation of stocks and bonds = 15% and 5%, 
respectively.
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opposed to noise. Later, we will refer to the concept of informativeness again, but in 
the broader context of linear regression with independent variables.3 

If, in Equation 3, we rewrite informativeness as the average squared z-score of 
stock and bond returns and substitute Equation 2 for single-period correlation, the 
correlation then becomes
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This expression simplifi es to the average product of stock and bond z-scores over 
the full sample, which is equivalent to the full-sample covariance of stock and bond 
returns divided by the product of their full-sample standard deviations, the formula 
commonly used to measure a time series correlation.
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At this point, we believe we have made our case that the single-period correlation 
is a better representation of the correlation of fi ve-year returns than the correlation 
of monthly returns; it captures the drift of stock and bond returns, whereas the cor-
relation of monthly returns does not. It is also better than the correlation of either 
independent blocks of fi ve-year returns or overlapping fi ve-year returns because it 
captures the time-varying nature of the stock-bond correlation whereas the full-sample 
correlation does not. 

We now move on to the fundamental predictors of the stock-bond correlation.

FUNDAMENTAL PREDICTORS OF THE STOCK–BOND CORRELATION

We suggest that the correlation of longer-term stock and bond returns responds 
to fundamental factors that infl uence the gradual drift in stock and bond returns.4 We 
have identifi ed four fundamental factors to predict the correlation of fi ve-year stock 
and bond returns. We select economic growth and infl ation because they are key 
drivers of stock and bond returns, respectively, and the interplay between them may 
affect the stock-bond correlation. For example, a positive demand shock will increase 
both growth and infl ation, which is likely to induce a divergence in stock and bond 
performance. By contrast, a supply-side shock, such as the 1970s oil crisis, may lead 
to higher infl ation but lower growth, which is likely to push stock and bond prices in the 
same direction. We also select the relative level and volatility of stock and bond yields 
because they likely affect investor demand for stocks versus bonds. For example, 
when stock and bond yields are similar, both assets are similarly attractive, implying 

3 In linear regression, informativeness takes into account the correlations of the independent vari-
ables with each other because these effects are distinct from the dependent variable, which is the object 
of the analysis. In the context of estimating the Pearson correlation, informativeness only takes into 
account the magnitude of individual variables because the correlation itself is the object of the analysis. 

4  Previous research has also suggested using fundamental factors to generate a forward-looking 
view of the stock-bond correlation. For example, see Johnson et al. (2014).
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a positive stock-bond correlation. However, when stock yields are meaningfully higher 
or riskier than bond yields, we might expect a negative stock-bond correlation.

We define each factor for the US market as described in the following. As we 
mentioned earlier, we use the S&P 500 Stock Index to represent stocks and the 
Bloomberg US Long Treasury Bond Index to represent bonds.

Fundamental Factors

§	Economic growth (year-over-year percentage change in industrial production)
§	Inflation (year-over-year percentage change in the Consumer Price Index)
§	Relative yield of stocks and bonds (natural log of the earnings yield divided 

by the 10-year Treasury rate)5

§	Relative volatility of stock and bond yield (natural log of the five-year trailing 
volatility of the earnings yield divided by the five-year trailing volatility of the 
10-year Treasury rate)

Model Specification

We define our variable of interest as the subsequent five-year single-period cor-
relation because, as we discussed, we believe that investors care more about how 
stocks and bonds co-move throughout the course of the investment horizon than how 
they co-move from month to month. We test five models to predict the subsequent 
five-year single-period correlation. In all cases, we use data starting in January 1926 
to forecast the single-period five-year correlation beginning in January 1930 through 
December 2018, and we update the predictions annually.

Prior to running the regression-based models (Models 2 through 5, below), we 
transform the dependent variable to prevent the models from predicting a correlation 
that violates the bounds of negative and positive one. First, we shift and re-scale the 
single-period correlation so that it ranges from zero to one:

	
SPC s b

single period correlation s,b
( , )

1 - ( )
2

* = +
	 (6)

Here, SPC * (s,b) is the shifted and re-scaled single-period correlation ranging 
from zero to one. Then, we apply the probit transformation so that it is unbound and 
normally distributed:

	 y probit SPC s b SPC s b( ( , )) ( ( , ))* 1 *= = Φ− 	 (7)

In Equation 7, y is the probit of the shifted and re-scaled correlation, SPC * (s,b), 
estimated as the inverse of the cumulative distribution function of the standard nor-
mal distribution with probability SPC * (s,b). 

After running the regressions, we transform the resulting predictions back so that 
they are correlations ranging from negative to positive one:

	
ˆ 2 (ˆ) 1Y y= Φ − 	 (8)

In this equation, Ŷ  is the predicted single-period correlation ranging from negative 
to positive one, ŷ  is the predicted probit of the shifted and re-scaled correlation, and 
Φ denotes the cumulative distribution function of the standard normal distribution.

5 We estimate the earnings yield as the inverse of the cyclically adjusted price/earnings ratio 
obtained from Robert J. Shiller’s website and the 10-year Treasury rate as the 10-year Treasury constant 
maturity rate obtained from the Federal Reserve Bank of St. Louis (prior to 1953, we use the 10-year 
Treasury rate from Robert J. Shiller’s website).
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Model 1: naïve extrapolation of trailing correlation. This model simply extrapolates 
the correlation of monthly stock and bond returns from the prior fi ve-year period to 
predict the single-period correlation for the next fi ve-year period. Not only is this 
approach the simplest way to model the stock-bond correlation, it is by far the most 
commonly used approach. 

Model 2: regression on trailing correlation. In  this model, we regress the trans-
formed fi ve-year single-period correlation on the correlation of monthly stock and bond 
returns from the prior fi ve-year period. This approach differs from naïve extrapolation 
in that the intercept and slope will differ from 0 and 1, respectively, which is implied 
by naïve extrapolation.

Model 3: regression on fundamental factors. In this model, we regress the trans-
formed fi ve-year single-period correlation on four fundamental factors: industrial pro-
duction, infl ation, relative yield of stocks and bonds, and relative volatility of stock 
and bond yields, as defi ned earlier. The predictors are measured as of the end of the 
period prior to the estimation of the single-period correlation.

Mod el 4: regression on fundamental factors fi ltered for relevance. In this model, we 
use the same predictors we used in Model 3, but we fi lter the historical observations 
for their relevance, based on a technique called partial sample regression.6 

Partial sample regression relies on a mathematical equivalence. The prediction 
from linear regression is a function of the weighted average of the past values of the 
dependent variable in which the weights are the relevance of the past observations 
for the independent variables. Relevance within this context has a precise meaning. 
It is the sum of the statistical similarity of the past observations to the current values 
for the independent variables, which is the negative of their Mahalanobis distances, 
and the informativeness of the past observations, which equals their Mahalanobis 
distances from the average values of the independent variables. 

Equation 9 measures the multivariate similarity between xi and xt. It is simply the 
opposite (negative) of the multivariate distance between xi and xt.

 Similarity x x x x x xi tx xi tx x i tx xi tx x i tx xi tx x( ,x x( ,x xi t( ,i tx xi tx x( ,x xi tx x ) ( ) ( )1) (1) () (= −) ( − Ωx x− Ωx xi t− Ωi tx xi tx x− Ωx xi tx x ) (− Ω) (x x−x x ′) (−) (  (9)

Here xt is a vector of the current values of the independent variables, xi is a 
vector of the prior values of the independent variables, the symbol ′ indicates matrix 
transpose, and Ω−1 is the inverse covariance matrix of X where X comprises all the 
vectors of the independent variables. This measure takes into account not only how 
independently similar the components of the xis are to those of the xts, but also the 
similarity of their co-occurrence to the co-occurrence of the xts. All else equal, prior 
observations for the independent variables that are more like the current observations 
are more relevant than prior observations that are less similar. 

However, not all measurements of similarity are alike. Observations that are 
close to their historical averages may be driven more by noise than by events. These 
ordinary occurrences are therefore less relevant. Observations that are distant from 
their historical averages are unusual and therefore more likely to be driven by events. 
These event-driven observations are potentially more informative.7 Given this intuition, 
we defi ne the informativeness of a prior observation xt as its multivariate distance 
from its average value, .x  This defi nition of informativeness is the same as used 
previously to compute the Pearson correlation, but we now include the off-diagonal 
elements of the covariance matrix because they pertain to X variables, which are 
independent from our object of focus, y.

6 We base our predictions on a subset of the 25% most relevant observations.
7 For further discussion of noise-driven versus event-driven observations and their relationship to 

estimating risk, see Chow et al. (1999).

It 
is

 il
le

ga
l t

o 
m

ak
e 

un
au

th
or

iz
ed

 c
op

ie
s 

of
 th

is
 a

rti
cl

e,
 fo

rw
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r, 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r p

er
m

is
si

on
.



8 | The Stock-Bond Correlation  February 2021

 Informativeness xi i i( )s x( )s xi i( )i i( )( )x x( )x xi i( )i ix xi ix x( )x xi ix x ( )( )x x( )x xi( )i
1= −( )= −( )x x( )x x= −x x( )x x Ω −( )Ω −( )x x( )x xΩ −x x( )x xx xix x( )x xix xΩ −x xix x( )x xix x1Ω −1 ′Ω −−Ω −  (10)

The relevance of an observation xi is equal to the sum of its multivariate similarity 
and its informativeness. 

 Relevance x Similarity s xi iSimii iSimilai ilarityi irity t is xt is x( )e x( )e xi i( )i i( ,i i( ,i i ) (In) (Informativ) (formativen) (enes) (ess x) (s xt i) (t iInt iIn) (Int iInformativt iformativ) (formativt iformativent ien) (ent ienest ies) (est iess xt is x) (s xt is x )= +x x= +x xt i= +t i= +Simi= +Simila= +larity= +rityi i= +i iSimii iSimi= +Simii iSimilai ila= +lai ilarityi irity= +rityi irity ( ,= +( ,x x( ,x x= +x x( ,x xi i( ,i i= +i i( ,i ix xi ix x( ,x xi ix x= +x xi ix x( ,x xi ix x ) (= +) (t i) (t i= +t i) (t i  (11)

To summarize, similarity equals the negative of the Mahalanobis distance of a 
prior observation of xi from its current observation xt. Informativeness equals the 
Mahalanobis distance of xi from its historical average. Relevance equals the sum of 
similarity and informativeness. In other words, prior periods that are like the current 
period but are different from the historical average are more relevant than those 
that are not. 

Once we determine the relevance of the past observations of the independent 
variables, we rely on the equivalence we noted earlier—that the prediction from 
linear regression is a function of the weighted average of the past values of the 
dependent variable in which the weights are the relevance of the past observations 
for the independent variables. This equivalence allows us to use Equations 12 
and 13 to derive a new prediction for the stock-bond correlation from a subset of 
relevant observations.8 

 y y
n

rity x x Informativeness x y yty yty y
i

n

i tx xi tx x i iy yi iy yˆ
1
2

( (Simi( (Simila( (larity( (rity , )x x, )x xi t, )i tx xi tx x, )x xi tx x (s x(s x ))(i i))(i i )
1

∑= +y y= +y y + −In+ −Informativ+ −formativen+ −enes+ −ess x+ −s x y y+ −y yi i+ −i iy yi iy y+ −y yi iy y(+ −(s x(s x+ −s x(s x ))(+ −))(i i))(i i+ −i i))(i i
=

 (12)

8 See Czasonis, Kritzman, and Turkington (2020) for a thorough discussion of this technique.

EXHIBIT 3
Correlation of Model Predictions and Actual Correlations

NOTES: By construction, models with more predictors are likely to have greater explanatory power, even if those predictors refl ect ran-
dom noise. The adjusted R2 is often used to address this issue; however, we cannot apply it to partial sample regression owing to com-
plexity in estimating the model’s degrees of freedom. Therefore, we use simulation to evaluate the explanatory power of each model 
beyond what is expected from purely random effects. Specifi cally, we shift the time series of Y so that it is aligned in arbitrary ways with 
the predictors. This maintains the empirical distribution and serial dependence of the variables. We then fi t each model and record the 
resulting correlation of predictions with simulated (shifted) Ys. We repeat this process 82 times (the total number of possible offsets 
in Y) to create a distribution of random correlations for each model. We evaluate the quality of a model’s fi t according to where its 
actual correlation falls within its distribution of random correlations. The results suggest meaningful improvement from fi ltering by rele-
vance. In the case of the Fundamental variables, fi ltered model, only fi ve random correlations exceeded the actual result (corresponding 
to a p-value of 0.06). While the fi ltered model with paths and full sample fundamental model have greater explanatory power than trail-
ing correlation, their results are not as statistically signifi cant (Trailing Correlation p-values = 0.27, Fundamental variables p-value = 0.44, 
Fundamental variables with path, fi ltered p-value = 0.37). It is useful to evaluate these results alongside the Henriksson-Merton results 
(Exhibit 4), which are less likely to be dominated by noise of modest differences around correlations of zero.
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Model 5: regression on the path of fundamental factors fi ltered for relevance. In this 
model we redefi ne industrial production and infl ation as paths. Instead of including 
just the prior periods’ values for industrial production and infl ation, we include values 
for the prior fi ve periods, along with the prior period values for the relative stock and 
bond yield and the relative volatility of the stock and bond yield. Therefore, the fi ve-
year single-period correlation in period t + 1 is regressed on industrial production 
and infl ation for periods t, t − 1, t − 2, t − 3, and t − 4, and relative stock and bond 
yield and relative volatility of the stock and bond yield in period t. Moreover, we fi lter 
the historical observations for their relevance, as we did for Model 4.

Exhibit 3 shows the correlation of the model predictions and the actual subse-
quent single-period correlations of fi ve-year returns.

Exhibit 3 reveals some interesting insights. First, the most common approach 
for forecasting the stock-bond correlation, which is to extrapolate the correlation 
of monthly returns, ties as the least reliable approach. It is tied with regressing 
the fi ve-year single-period correlation on the correlation of monthly stock and bond 
returns from the prior fi ve-year period. Fitting the observations shifts the intercept 
and slope away from 0 and 1, respectively, but it does not improve the explanatory 
power. The introduction of fundamental variables to predict the stock-bond correlation 
signifi cantly improves explanatory power, but the largest improvement comes from 
fi ltering the historical observations for their relevance. There is further benefi t to 
replacing single observations for industrial production and infl ation with paths.

Next, we evaluate these models by applying a nonparametric procedure, called the 
Henriksson-Merton test, to determine how well these models anticipate whether the 
subsequent level of the stock-bond correlation will be positive or negative.9 Specifi cally, 
we calculate the percentage of times each model predicted the subsequent correlation 
would be positive when it was positive and that it would be negative when it was neg-
ative. We also test to determine how well these models predict whether the change 
in the subsequent correlation will be positive or negative. These percentages would 
sum to 2 if a model perfectly predicted the sign of the stock-bond correlation level 
or change. If a model had no ability to determine whether the subsequent level or 
change in correlation would be positive or negative, these percentages would sum 
to 1. Any value between 1 and 2 would be indicative of some degree of predictive 
power. A value below 1 would indicate that a model was worse than random or, more 
forgivingly, a reverse indicator. Exhibit 4 shows the Henriksson–Merton scores for 
the fi ve models we tested.

9 This nonparametric procedure was introduced by Henriksson and Merton (1981).

EXHIBIT 4
Henriksson-Merton Scores, Positive versus Negative
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Exhibit 4 reveals that the innovations described earlier are, on balance, beneficial 
to forecasting the subsequent sign of both the level and change in the stock-bond 
correlation. In combination, they provide the most reliable forecasts.

SUMMARY

Investors rely on the stock-bond correlation to construct optimal portfolios, design 
hedging strategies, and assess risk. For many, if not most, applications investors care 
less about how stocks and bonds co-move month to month than about their co-move-
ment over the duration of the investment horizon. The most common approach for 
estimating the longer-term correlation of stocks and bonds is to extrapolate the cor-
relation of monthly returns over a prior period. However, this approach is decidedly 
unreliable. We introduce several innovations for forecasting the longer-term correlation 
of stocks and bonds. We introduce the notion of a single-period correlation to address 
the problem of the autocorrelations and lagged cross-correlations of stock and bond 
returns being nonzero and that longer-horizon correlations vary through time. We 
then identify several fundamental variables to predict the longer-horizon stock-bond 
correlation. We include paths as well as single observations in our regressions, and 
we filter historical observations for their statistical relevance. We find that these inno-
vations significantly improve the reliability of our forecast of the stock-bond correlation.

Although we have only addressed the correlation of stock and bond returns in 
this article, we have no reason to doubt that the methodology proposed herein would 
work as well with other asset classes. It may be the case that the appropriate funda-
mental predictors would vary with the asset classes under consideration. Moreover, 
the degree to which our approach can be successfully transferred to other asset 
class pairs is an empirical issue. Nonetheless, the conceptual basis for our approach 
should apply broadly.
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