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Addition by Subtraction:  
A Better Way to Forecast Factor 
Returns (and Everything Else)
Megan Czasonis, Mark Kritzman, and David Turkington

ABSTRACT:Financial analysts assume that 
the reliability of predictions derived from regression 
analysis improves with sample size. This is thought 
to be true because larger samples tend to produce 
less noisy results than smaller samples. But this is 
not always the case. Some observations are more 
relevant than others, and often one can obtain more 
reliable predictions by censoring observations that 
are not sufficiently relevant. The authors introduce 
a methodology for identifying relevant observations 
by recasting the prediction of a regression equation 
as a weighted average of the historical values of the 
dependent variable, in which the weights are the 
relevance of the independent variables. This equiva-
lence allows them to use a subset of more relevant 
observations to forecast the dependent variable. The 
authors apply their methodology to forecast factor 
returns from economic variables.

TOPICS: Portfolio management/multi-asset 
allocation,  risk management,  quantitative 
methods*

Financial analysts regularly use regres-
sion analysis to make predictions, 
and they typically assume that the 
quality of their predictions improves 

with sample size. This assumption is not 
always valid; quality instead depends on the 
extent to which the observations for the inde-
pendent variable are equally relevant. It may 
be the case that a strong relationship exists 
within a subset of the observations but is con-
cealed by observations that are not relevant. 
By censoring irrelevant observations, one 
might uncover these relationships. 

We begin by introducing the notion of 
relevance as the sum of multivariate similarity 
and informativeness. We next show that the 
predicted value from a regression equation 
can be expressed as a weighted average of 
the prior values of the dependent variable, 
in which the weights equal the relevance of 
the prior values for the independent variables. 
We next discuss the merits of predicting the 

•	 The prediction from a linear regression equation is mathematically equivalent to a 
weighted average of the past values of the dependent variable, in which the weights are 
the relevance of the independent observations.

•	 Relevance within this context is defined as the sum of statistical similarity and informa-
tiveness, both of which are defined as Mahalanobis distances.

•	 Together, these features allow researchers to censor less relevant observations and derive 
more reliable predictions of the dependent variable.

KEY FINDINGS
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dependent variable from a subsample in which the irrel-
evant observations have been censored. Finally, we apply 
this methodology to forecast factor returns from eco-
nomic variables. Our results show that by forecasting 
factor returns in this manner, we can produce more 
reliable predictions than by applying regression analysis 
to the full sample of observations.

RELEVANCE

We define relevance as the sum of multivariate simi-
larity and informativeness. We start by using the Maha-
lanobis distance to measure the multivariate distance 
between two observations, as shown in Equation 1.1

  = − Ω − ′( , ) ( ) (Ω −) (Ω −Ω −−Ω −) (Ω −−Ω − )1Ω −1Ω −Ω −) (Ω −1Ω −) (Ω −d x( ,d x( ,x x= −x x= −) (x x) (= −) (= −x x= −) (= − x xΩ −x xΩ −) (x x) (Ω −) (Ω −x xΩ −) (Ω − xi t( ,i t( ,x xi tx xi tx xi tx xi tΩ −i tΩ − xi tx  (1)

Here, xt is a vector of the current values of the inde-
pendent variables, xi is a vector of the prior values of the 
independent variables, the symbol ′ indicates matrix trans-
pose, and Ω−1 is the inverse covariance matrix of X where 
X comprises all the vectors of the independent variables.

The Mahalanobis distance takes into account not 
only how independently similar the components of the 
xis are to those of the xts, but also the similarity of their 
co-occurrence to the co-occurrence of the xts. Multi-
variate similarity is simply the opposite (negative) of the 
multivariate distance between xi and xt:

 − Ω ′( , ) (= −) (= − ) (− Ω) (− Ω−) (− )1) (1) (Similarity x x( ,x x( , x x− Ωx x− Ω x x−x x−i t( ,i t( ,x xi tx x( ,x x( ,i t( ,x x( , i t− Ωi t− Ωx xi tx x− Ωx x− Ωi t− Ωx x− Ω i tx xi tx x  (2)

All else equal, prior observations for the indepen-
dent variables that are similar to current observations are 
more relevant than prior observations that are less similar. 

However, not all measurements of similarity are 
alike. Observations that are close to their historical aver-
ages may be driven more by noise than by events. These 
ordinary occurrences are therefore less relevant. Obser-
vations that are distant from their historical averages 
are unusual and therefore more likely to be driven by 
events; these event-driven observations are potentially 
more informative.2 Given this intuition, we define the 

1 The Mahalanobis distance was introduced in Mahalanobis 
(1927) and Mahalanobis (1936).

2 For further discussion of noise-driven versus event-driven 
observations and their relationship to estimating risk, see Chow 
et al. (1999).

informativeness of a prior observation xi as its multi-
variate distance from its average value, x:

 ( ) ( )( ) ( )( )1InformInformInf ativeness x( )s x( ) ( )x x( ) ( )x x( )i i( )i i( ) ( )i i( )( )x x( )i i( )x x( ) i( )i( )( )x x( )i( )x x( )= −( )= −( )( )x x( )= −( )x x( )Ω −( )Ω −( )1Ω −1( )x x( )Ω −( )x x( )( )x x( )i( )x x( )Ω −( )x x( )i( )x x( )′Ω −−Ω −   (3)

The relevance of an observation xi is equal to the 
sum of its multivariate similarity and its informativeness:

 ( ) ( , ) ( )Relevance x S( )x S( ) imilaritimilaritimilar x I) (x I) (x Inf) (nf) () (x I) (nf) (x I) () (orm) () (nf) (orm) (nf) () (ativenes) (s x) (s x) (i i( )i i( ) ( ,i i( ,x Si ix S( )x S( )i i( )x S( ) imilari iimilariti iitimilaritimilari iimilaritimilar y xi iy x( ,y x( ,i i( ,y x( ,ity xiti iity xit t i) (t i) (x It ix I) (x I) (t i) (x I) (nft inf) (nf) (t i) (nf) () (x I) (nf) (x I) (t i) (x I) (nf) (x I) () (orm) (t i) (orm) () (nf) (orm) (nf) (t i) (nf) (orm) (nf) () (ativenes) (t i) (ativenes) (s xt is x) (s x) (t i) (s x) (= +( ,= +( ,x S= +x Similar= +imilarit= +itimilaritimilar= +imilaritimilar y x= +y x( ,y x( ,= +( ,y x( ,ity xit= +ity xit x I= +x I) (x I) (= +) (x I) (i i= +i i( ,i i( ,= +( ,i i( ,x Si ix S= +x Si ix Similari iimilar= +imilari iimilariti iit= +iti iitimilaritimilari iimilaritimilar= +imilaritimilari iimilaritimilar y xi iy x= +y xi iy x( ,y x( ,i i( ,y x( ,= +( ,y x( ,i i( ,y x( ,ity xiti iity xit= +ity xiti iity xit x It ix I= +x It ix I) (x I) (t i) (x I) (= +) (x I) (t i) (x I) (  (4)

To summarize, similarity equals the negative of the 
Mahalanobis distance of a prior observation of xi from 
its current observation xt. Informativeness equals the 
Mahalanobis distance of xi from its historical average. 
Relevance equals the sum of similarity and informative-
ness. In other words, prior periods that are like the cur-
rent period but are different from the historical average 
are more relevant than those that are not. 

These notions are illustrated in Exhibit 1, which 
shows a scatter plot of two hypothetical variables. These 
variables both have a standard deviation of 5% and are 
50% correlated. The gray dot represents current values, 
and the two black dots represent values in two prior 
periods. To determine each prior observation’s relevance 
to the current observation, we first measure their mul-
tivariate similarity to the current observation. In this 
example, both prior observations have the same mul-
tivariate similarity as each other with respect to the 
current observation (0.5). Next, we quantify each prior 
observation’s informativeness as its multivariate distance 
from the origin. All else equal, more extreme observa-
tions, such as point B, are more informative than mod-
erate observations, such as point A. Finally, each prior 
observation’s overall relevance is summarized as the sum 
of its similarity to the current observation and its infor-
mativeness. In this example, points A and B are equally 
similar to the current environment; however, B is more 
relevant because it is more informative. 

LINEAR REGRESSION AS A RELEVANCE-
WEIGHTED AVERAGE OF THE DEPENDENT 
VARIABLE

It is mathematically equivalent to interpret ŷt from 
a fitted ordinary least squares regression equation as the 
weighted average of the prior yi’s, in which the weights 
equal the relevance of the prior xi’s.
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Let’s begin by restating Equation 4 using the nota-
tion of Equations 2 and 3 and then simplifying, as shown 
in Equations 5 and 6. For notational simplicity we will 
assume that X is shifted to have a mean of zero.

 − Ω + Ω ′− −( ) ( )− Ω( )− Ω ( )−( )−1 1′1 1′ + Ω1 1+ Ω− −1 1− −′− −′1 1′− −′ + Ω− −+ Ω1 1+ Ω− −+ Ω( )1 1( )− −( )− −1 1− −( )− −Relevance x x= −x x= −( )x x( ) ( )x x( )x x− Ωx x− Ω( )x x( )− Ω( )− Ωx x− Ω( )− Ω ( )x x( )x x+ Ωx x+ Ω( )x x( ) xi i( )i i( ) ( )i i( )x xi ix x( )x x( )i i( )x x( ) ( )x x( )i i( )x x( )t i( )t i( ) ( )t i( )x xt ix x− Ωx x− Ωt i− Ωx x− Ω( )x x( )t i( )x x( )− Ω( )− Ωx x− Ω( )− Ωt i− Ω( )− Ωx x− Ω( )− Ω ( )x x( )t i( )x x( )t i+ Ωt i+ Ω( )t i( )x xt ix x+ Ωx x+ Ωt i+ Ωx x+ Ω( )x x( )t i( )x x( ) i  (5)

 = Ω − Ω ′− −( ) = Ω2= Ω 1 1′1 1′ − Ω1 1− Ω− −1 1− −′− −′1 1′− −′ − Ω− −− Ω1 1− Ω− −− ΩRelevance x x= Ωx x= Ω( )x x( ) = Ω2= Ωx x= Ω2= Ω x x− Ωx x− Ω xi t= Ωi t= Ω( )i t( )x xi tx x= Ωx x= Ωi t= Ωx x= Ω( )x x( )i t( )x x( ) = Ω2= Ωx x= Ω2= Ωi t= Ω2= Ωx x= Ω2= Ω i t− Ωi t− Ωx xi tx x− Ωx x− Ωi t− Ωx x− Ω t  (6)

We assert that the prediction ŷt from a fitted regres-
sion equation is equivalent to a relevance-weighted 
average of prior observations for yi times a simple scalar 
multiple of 1/2:

 ∑= ⋅= ⋅
=

ˆ
1
2

1
( )

1

y
N

Relevance x y( )x y( )t
i

N

i ix yi ix y( )x y( )i i( )x y( )  (7)

 ˆ
1

2
1
21

1 111 11
y

N
x x y x x yt

i

N

t ix xt ix x i t2i t2
y xi ty x

2
y x

2i t2
y x

2 tx ytx y∑= Ω2= Ω2x x= Ωx x= Ω= Ω1= Ω1
x xt ix x= Ωx xt ix x∑= Ω∑ 1 1′1 11 1− Ω1 111 11− Ω11 11− Ω1 1− Ω1 1y x− Ωy xy x− Ωy xi t− Ωi ty xi ty x− Ωy xi ty x ′

=

1 1− −1 1− −1 1− −1 11 1′1 1− −1 1′1 11 1− Ω1 1− −1 1− Ω1 1  (8)

Next, let’s assume, without loss of generality for 
our purposes, that the observed yi’s are shifted to have a 
mean value of zero, which causes the final term to drop 
out and yields

 ∑= Ω= Ω∑= Ω∑ ′
=

−ˆ
1= Ω1= Ω

1

1y
N

x x= Ωx x= Ω yt
i

N

t ix xt ix x= Ωx x= Ωt i= Ωx x= Ω i  (9)

The expression for the covariance matrix (remem-
bering that we have assumed means of zero for each 
component of X) is given by

 Ω = ′
1
N

X X′X X′  (10)

The inverse of the covariance matrix is given by

 Ω =Ω =− −Ω = ( )1 1Ω =1 1Ω = ′1 1′− −1 1− −Ω =− −Ω =1 1Ω =− −Ω = ( )1 1( )′( )′1 1′( )′− −( )− −1 1− −( )− −′− −′( )′− −′1 1′− −′( )′− −′N X( )N X( )1 1N X1 1− −1 1− −N X− −1 1− −( )1 1( )N X( )1 1( )− −( )− −1 1− −( )− −N X− −( )− −1 1− −( )− −( )X( )( )1 1( )X( )1 1( )′( )′1 1′( )′X′( )′1 1′( )′− −( )− −1 1− −( )− −X− −( )− −1 1− −( )− −′− −′( )′− −′1 1′− −′( )′− −′X′− −′( )′− −′1 1′− −′( )′− −′  (11)

Substituting this value into the expression for ŷt , 
we have

 ∑ ′ ′
=

′ ′−′ ′ˆ ( )′ ′( )′ ′
1

1′ ′1′ ′y x∑y x∑=y x= ( )X X( )′ ′( )′ ′X X′ ′( )′ ′x yty xty x
i

N

t i( )t i( )( )X X( )t i( )X X( ) x yt ix yi  (12)

By expressing Equation 12 in standard matrix 
notation, we have

 ′ ′′ ′−′ ′ˆ ( )′ ′( )′ ′1′ ′1′ ′y x=y x= ( )X X( )′ ′( )′ ′X X′ ′( )′ ′X Y′ ′X Y′ ′t ty xt ty x  (13)

e X H i B i t  1
Similarity, Informativeness, and Relevance

–20%

0%

20%

–20% 0% 20%

Historical A
Distance from current = 0.5
Similarity = –0.5
Informativeness = 1
Relevance = –0.5 + 1 = 0.5

Current

Historical B
Distance from current = 0.5
Similarity = –0.5
Informativeness = 6
Relevance = –0.5 + 6 = 5.5

Va
ria

bl
e 

1

Variable 2
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This leads us to the familiar standard solution for 
generating a prediction from a fitted linear regression:

 ′βŷ x=y x=t ty xt ty x  (14)

A more general case permits Y to have a non-zero 
mean, = Σ1= Σ1= Σ 1y y= Σy y= Σ= Σy y= Σ =y y== Σ1= Σy y= Σ1= Σ 1y y1y yNy y= Σy y= ΣN= Σy y= Σiy yiy yN

i . In this case, the formula becomes

 
ˆ

1
2

( )( )
1

y y
N

Relevance x y yt i ii

N∑= + −
=  (15)

We next demonstrate this equivalence with a 
simple example. We first regress values for a hypothet-
ical dependent variable on two hypothetical indepen-
dent variables. The inputs are shown in the top panel of 
Exhibit 2. For convenience, we de-mean the variables 

before fitting the regression. The middle panel applies 
the beta coefficients to the current-period observations 
(t = 6) to yield the prediction for the dependent variable 
ŷ of −4.9%. The final panel illustrates the equivalent 
approach of weighting the yi’s by their relevance to arrive 
at ŷ. The process is as follows:

1. First, we measure the multivariate distance of each 
observation from the current observation (time 
t = 6) based on their respective xi’s (column I). The 
opposite (negative) of these distances represents the 
similarity of each historical observation to the cur-
rent observation (column J). 

2. We then quantify the informativeness of each his-
torical observation as its multivariate distance from 
the origin (column K). All else equal, extreme 

e X H i B i t  2
Equivalence of Fitted Regression and Relevance-Weighted Dependent Variables

Panel A: Inputs

Observation
(i)
1
2
3
4
5
6

Panel B: Standard Approach (based on de-meaned variables)

Beta
Values for t = 6
Beta-weighted X –4.9%

Panel C: Relevance-Weighted Approach (based on de-meaned variables)

Observation
(i)
1
2
3
4
5
6

Prediction (ŷ ) for t = 6

Prediction (ŷ )
for t = 6

Sum of weighted Xs

Relevance-
Weighted Y
(M) * (F)

–4.4%
–0.4%
1.0%
0.0%

–0.3%
–0.8%

–4.9%

Sum of 
weighted Ys

(N)

Scaled Relevance
(L)/[2*(n_obs–1)]

–0.21
0.18

–0.10
–0.16
–0.04
0.05

(M)

Relevance
(J) + (K)

–2.1
1.8

–1.0
–1.6
–0.4
0.5

(L)

Informativeness
xiΩ

−1xi′

2.0
2.9
0.6
0.8
3.2
0.5

(K)

Similarity
–1 * (I)

–4.2
–1.1
–1.6
–2.4
–3.6
0.0

(J)

Distance from t = 6
(xi – xt)Ω

−1(xi – xt)′ 

4.2
1.1
1.6
2.4
3.6
0.0

(I)

De-meaned Asset
Return (Y)

20.6%
–2.2%
–9.9%
–0.2%
7.4%

–15.8%

(F)
De-meaned

Variable 2 (X2)
–1.1%
–0.1%
–0.7%
0.2%
1.6%
0.2%

(E)
De-meaned

Variable 1 (X1)
–0.8%
1.4%

–0.2%
–0.7%
–0.2%
0.6%

(D)

Asset Return
20.6%
–2.2%
–9.9%
–0.2%
7.4%

–15.8%

(C)

Variable 2
–1.3%
–0.2%
–0.9%
0.0%
1.4%
0.0%

(B)

Variable 1
–0.7%
1.5%

–0.1%
–0.5%
–0.1%
0.7%

(A)

X2

–0.6
0.2%

–0.1%

(H)
X1

–8.0
0.6%

–4.8%

(G)
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observations (those that lie far from the origin) 
are more informative than moderate observations 
(those that lie close to the origin). 

3. We next sum each observation’s similarity to the 
current observation and its informativeness to 
derive an overall relevance score (column L). 

4. Finally, to generate a prediction for time t = 6, we 
scale the relevance scores (column M) and multiply 
them by their respective Y values (column N), the 
sum of which is the predicted value ŷ. 

Note that this procedure generates a prediction, 
−4.9%, that is identical to the regression approach illus-
trated in the middle panel.

CREATING A SUBSAMPLE OF RELEVANT 
OBSERVATIONS

The equivalence of a fitted regression prediction 
and a relevance-weighted average of the past values of 
the dependent variable offers an intriguing insight into 
the workings of linear regression. It reveals the implicit 
assumption of linear regression, which is that whatever 
occurred during similar periods in history will recur, 
and whatever occurred during dissimilar periods of 
history will occur but in the opposite direction. This 
insight invites the question of whether data from similar 
and dissimilar past observations are equally useful. In 
other words, should we be more inclined to extrapolate 
observations from similar past periods than from dis-
similar past periods (but in the opposite direction)? 

We can address this question by partitioning our 
sample into subsamples that pass relevance thresholds, 
considering both similarity and informativeness. We 
then apply our relevance-weighted methodology to 
these subsamples to predict the dependent variable:
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(16)

In Equation 16, the summation only occurs over the 
subsample of historical observations that meet or exceed 
a chosen relevance threshold, which we denote as rel-
evant i’s. Likewise, the mean is evaluated on this same 
subsample, = Σ1= Σ1= Σy y= Σy y= Σ= Σy y= Σ ′y y′= Σ1= Σy y= Σ1= Σy yny y= Σy y= Σn= Σy y= Σrey yrey yley yley yvany yvany yt iy yt iy ysy ysy yn

i . In contrast to Equation 15, 
which averages across all N observations in the full 
sample, Equation 16 averages across the total number of 
observations in the subset, n. This formula converges to 
two intuitive edge cases. If we include all N observations, 

the estimate is equal to that of a standard linear regression. 
If we include only a single data point xi that is precisely 
equal to xt, the prediction equals yi for that observation.

It is important to note that partial sample regres-
sion is not equivalent to running a new regression on 
the identified subsamples because linear regression infers 
relevance from the full sample. If we were to run a 
new regression on a subsample of relevant observa-
tions, that regression would only “know” about these 
relevant observations. This new regression would fail 
to recognize that all the observations are relevant to 
the conditions we are predicting and therefore would 
produce a biased result. In other words, we must censor 
the predictive contributions of irrelevant observations 
after we assess their relevance and without changing our 
assessment of their relevance. 

It is easy to show using simulation that if the data 
come from a single stationary multivariate normal dis-
tribution, the expected predictions from each subsample 
will be equivalent. The question we wish to address is 
whether this prediction holds empirically. Stated dif-
ferently, can we improve the quality of our prediction 
by using more relevant prior observations? Before we 
proceed to our empirical analysis, it might be helpful to 
place our innovation in the context of previous research.

Relationship to Previous Research

Our partial sample regression methodology may 
be viewed as an application of the so-called Nadaraya–
Watson kernel regression. Nadaraya (1964) and Watson 
(1964) independently proposed an estimator for predicting 
ŷ that consists of a kernel-weighted average of the histor-
ical data points Y. The kernel ( , )K x( ,K x( ,xh t( ,h t( ,K xh tK x( ,K x( ,h t( ,K x( , i  refers to a type of 
function that assigns values based on the distance between 
two points. Points that are close together receive greater 
value, whereas those that are more distant are assigned 
lower values. The assignment of these values, and thus the 
way they decay with increasing distance between points, 
is determined by a function or parameter h called the 
bandwidth. Kernel regression is often called kernel smoothing 
because it is a refinement of k-nearest-neighbors esti-
mation, in which ŷ is taken to be the equally weighted 
average of Y for a subset of the closest data points in X. 

A wide variety of kernel functions have been pro-
posed in the literature. They vary in how distance is mea-
sured between two points and in the shape of the weight 
decay applied to larger distances. It is most common to 
use the simple Euclidean distance to assess the similarity 
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between observations and to use various functional forms 
of a bell-shaped curve to de-emphasize larger distances. 

To the best of our knowledge, researchers and 
practitioners do not commonly use the Mahalanobis 
distance in this context. Moreover, we are not aware 
of any previous research documenting the fact that a 
Mahalanobis-based kernel exactly reproduces the pre-
dictions from ordinary least squares linear regression. 
We believe that this connection is powerful, not only to 
justify extrapolation of historically relevant observations 
but also to lend further intuition to the results of linear 
regression analysis and its extension to our relevance-
weighted average methodology. 

We should also note that our approach is different 
from weighted least squares regression, which uses fixed 
weights regardless of the data point being predicted and 
applies the weights to calculate the covariance matrix 
among predictors; in contrast, we use the full historical 
covariance matrix to measure distance. Moreover, our 
approach is different from performing separate regres-
sions on subsamples of the most relevant observations; 
in a separate regression approach, the covariance matrix 
used for estimation would also be based on the sub-
sample, whereas we use the full-sample covariance 
matrix. Lastly, other approaches to kernel regression 
only consider similarity, whereas our approach considers 
both similarity and informativeness.

EMPIRICAL ANALYSIS

To illustrate our methodology, we use economic 
variables to predict factor performance. Consider-
able research suggests that factor performance can be 
explained by economic variables. Recent articles on 
this topic include those by Bender et al. (2018), Amenc  
et al. (2019), and Fergis et al. (2019). Each of these 
articles includes a summary of previous research. How-
ever, there is widespread disagreement on which eco-
nomic variables are important and in what way they 
affect factor performance. Many researchers have noted 
that the effects are not necessarily constant over time: 
Some relationships seem to be stronger during partic-
ular calendar periods or during particular economic and 
financial regimes. We wish to determine whether our 
methodology captures the time-varying nature of these 
relationships and therefore offers better-informed pre-
dictions of factor returns. With our approach, we do not 
need to distinguish between a predicting variable and 
a conditioning variable. Relevance and prediction are 

evaluated simultaneously across the variables we choose 
for X. 

Data and Calibration

We consider seven long–short US equity factors3: 

•	 Equity (S&P 500 minus Bloomberg US Treasuries) 
•	 Size (Kenneth French’s small minus big factor)
•	 Value (Kenneth French’s high minus low factor)
•	 Profitability (Kenneth French’s robust minus weak 

factor)
•	 Investment (Kenneth French’s conservative minus 

weak factor)
•	 Momentum (Kenneth French’s momentum factor)
•	 Volatility (Kenneth French’s low-volatility [bottom 

quintile] portfolio minus high-volatility [top quin-
tile] portfolio)4

We use eight US economic variables as our predic-
tors. Specifically, we include the level (defined in paren-
theses) and one-year change of the following variables5: 

•	 Economic growth (year-over-year percentage 
change in real gross national product, seasonally 
adjusted)

•	 Unemployment rate (civilian unemployment rate, 
seasonally adjusted)

•	 Inf lation (year-over-year percentage change in the 
Consumer Price Index, seasonally adjusted) 

•	 Credit spreads (Moody’s BAA rate—10-year Trea-
sury constant maturity rate)

Results

For each factor, we regress historical returns on 
lagged observations of the economic variables.6 The 
dependent variable in each regression is the past year’s 

3 We obtain the S&P 500 Index and Bloomberg US Trea-
suries from Datastream. All Kenneth French data are obtained 
from https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html.

4 We lever the low-volatility portfolio such that it has the 
same volatility as the high-volatility portfolio (based on trailing 
60-month returns). We assume borrowing at the risk-free rate.

5 All economic data are sourced from the Federal Reserve of 
St. Louis Economic Data (FRED) online library.

6 We use log returns for Y and de-mean the X variables before 
running the regression.
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return as of each quarter end. The independent vari-
ables are one-year-lagged levels and changes in the eco-
nomic variables from the year preceding the returns. 
For each period’s observation (xt), we generate rele-
vance-weighted predictions ŷ using the methodology 
described previously. We do this for two subsamples: 
the 25% of observations least relevant to xt and the 25% 
most relevant to xt. Finally, we evaluate the quality of 
our predictions for three approaches: a fitted regression 
equation based on the full sample, a relevance-weighted 
average applied to the 25% least relevant periods, and a 
relevance-weighted average applied to the 25% most rel-
evant periods. As our figure of merit, we use the correla-
tion of the predicted returns with the actual returns. We 
use simulation to determine the statistical significance of 

the difference between the partial sample (most relevant) 
and full sample regression models.7

7 To generate a P-value of asymmetry, we compare the differ-
ence in correlation of the partial sample regression and full sample 
regression to a simulated distribution of differences that assumes 
all data points equally ref lect the true relationship between Y and 
X. Specif ically, for each factor, we simulate observations for the 
hypothetical X variables by (1) drawing quarterly values from the 
multivariate normal distribution that characterizes the variables at a 
quarterly frequency and (2) summing the simulated quarterly vari-
ables over rolling four-quarter periods. This mimics the overlapping 
nature of our observations. To generate the simulated Y variable 
observations, we apply the beta coeff icients from the actual full 
sample regression to the simulated X variables and add simulated 
error terms drawn from the distribution of actual errors. We repeat 
this process 1,000 times to generate a distribution of correlation 
differences between the partial sample and full sample regression 

e X H i B i t  3
Relevance-Weighted Value Returns, June 1974–December 2018

Least relevant Most relevant

Relevance

–0.05

0.00

0.05

1974 1979 1984 1989 1994 1999 2004 2009 2014

Returns

–60%

0%

60%

1974 1979 1984 1989 1994 1999 2004 2009 2014

Weighted Returns

–0.8%

0.0%

0.8%

1974 1979 1984 1989 1994 1999 2004 2009 2014
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Before we proceed to the results, we present a visu-
alization of how we weight the value factor returns, as 
an example, based on the relevance of historical periods 
to produce predictions of the return to the value factor 
in the final period.8

The black bars in the top panel of Exhibit 3 rep-
resent the 25% of periods that are most relevant based 
on the economic variables described earlier. The gray 
bars represent the 25% that are least relevant. The white 
bars represent the remaining periods. The middle panel 
shows the returns of the value factor as defined earlier, 
and the bottom panel, which is the product of the top 
two panels, gives the relevance-weighted returns. 

This depiction allows us to observe which periods 
make more important contributions in predicting the 
dependent variable. The full-sample prediction, which 
comes from the f itted regression equation, is −3.4%. 
The least relevant observations predict a return of +1.1% 
based on the relevance-weighted average approach. The 
most relevant observations, also based on the relevance-
weighted average approach, predict that the value factor 
will return −10.5% in the next period. It is clear that 
these different samples produce different outcomes. We 
next seek to determine which approach produces the 
most reliable outcome.

Exhibit 4 shows the results based on data from June 
1974 through December 2018. For each factor, the dif-
ference in fit between the partial sample and full sample 

models. The P-value equals the fraction of simulated differences 
that exceeds the actual difference.

8 For purposes of illustration, we shift X and Y to have mean 
values of zero. This allows us to exclude the second term in Equation 6 
because it is merely a constant that multiplies the average of Y.

regression models is positive and in most cases statistically 
significant. Moreover, return predictions derived from 
the least relevant observations are negatively correlated 
with actual returns. These results strongly suggest that 
relevant economic environments contain more informa-
tion about future factor performance than less relevant 
environments.

SUMMARY

Financial analysts employ regression analysis in 
a variety of settings to predict variables of interest. 
Those trained in classical statistics commonly assume 
that the quality of a prediction improves with sample size 
because larger samples tend to produce less noisy results 
than smaller samples. But this is not always the case. We 
argue that, in some cases, one can produce more reliable 
predictions by using subsamples of the original data in 
which less relevant observations have been censored. 
We define relevance in a mathematically precise way 
as the sum of multivariate similarity and informative-
ness. Given this precise definition of relevance, we show 
that the prediction from a fitted regression equation is 
equivalent to the weighted average of the past values of 
the dependent variable, in which the weights are the 
relevance of the independent variables. We show how 
to use this equivalence to derive predictions from a sub-
sample of relevant observations and apply this method-
ology to predict factor returns from economic variables. 
Our results suggest that in certain settings we produce 
more reliable predictions by taking a weighted average of 
past values for the dependent variable based on a sample 
that has been censored for relevance than by applying 
regression analysis to the full sample. We do not argue 

e X H i B i t  4
Correlations of Model Returns and Actual Returns

Note: P-values ref lect the null hypothesis that all data points equally ref lect the true relationship between Y and X.

Equity
Size
Value
Profitability
Investment
Momentum
Volatility

Full 
Regression

33.5%
55.5%
36.9%
22.2%
41.5%
62.2%
35.7%

Filtered:
Least

Relevant

–14.9%
–24.1%

–5.5%
–4.4%

–10.4%
–21.8%
–6.5%

Filtered:
Most

Relevant

62.0%
63.8%
61.4%
53.5%
65.2%
70.0%
57.1%

Difference:
Most

Relevant-Full

28.5%
8.4%

24.4%
31.4%
23.7%
7.8%

21.4%

P-value
of Difference

0.04
0.58
0.10
0.09
0.05
0.35
0.21
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that our results apply generally. However, for settings 
in which the data are unlikely to be stationary and 
multivariate normal and in which there may be signifi-
cant disparity in the relevance of historical observations, 
we strongly recommend our methodology.
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Macroeconomic Risks in Equity Factor 
Investing
Noël Amenc, Mikheil Esakia, Felix Goltz,  
and Ben Luyten

The Journal of Portfolio Management 
https://jpm.pm-research.com/content/45/6/39

ABSTRACT:There is a consensus that equity factors are cyclical 
and depend on macroeconomic conditions. To build well-diversified 
portfolios of factors, one needs to account for the fact that different 
factors may have similar dependencies on macroeconomic conditions. 
The authors provide a protocol for selecting relevant macroeconomic 
state variables that ref lect changes in expectations about the aggregate 
economy. They show that returns of standard equity factors depend 
significantly on such state variables. Factor returns also depend on 
aggregate macroeconomic regimes ref lecting good and bad times. These 
macroeconomic risks have strong portfolio implications. For example, 
some equity factors depend on interest rate risk. Investors who already 
have exposure to this risk through bond investments may increase 
loss risk when tilting to the wrong equity factors. The authors also 
show that standard multifactor allocations do not sufficiently address 
macroeconomic conditionality. Combining factors may not reduce mac-
roeconomic risks even for factors with low correlation. Understanding 
macroeconomic risks is a prerequisite both for risk transparency and 
for improving diversification of equity factor investments.

The Promises and Pitfalls of Factor Timing
Jennifer Bender, Xiaole Sun, Ric Thomas,  
and Volodymyr Zdorovtsov

The Journal of Portfolio Management
https://jpm.pm-research.com/content/44/4/79

ABSTRACT: The potential to dynamically allocate across fac-
tors, or factor timing, has been an area of academic and practitioner 
research for decades. In this article, the authors revisit the promises 
of factor timing, documenting the historical linkages between equity 
factor performance and different groupings of predictors: sentiment, 
valuation, trend, economic conditions, and financial conditions. The 
authors highlight that different predictors are more relevant for certain 
horizons, so the horizon is critical in factor timing. They also argue 
there are significant pitfalls with factor timing as well. The difficulty 
of timing factors has been well documented, given the uncertainty of 
exogenous elements affecting their behavior and the complexity of the 
underlying relationships. Most importantly, the underlying causal 
links are time varying. In addition, these relationships are observed 
with the benefit of hindsight and thus suffer from the age-old problem 
of data mining. Despite these caveats, the authors believe that at the 
margin it is possible to time certain elements that can add value and 
improve outcomes.
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Enhanced Scenario Analysis
Megan Czasonis, Mark Kritzman,  
Baykan Pamir, and David Turkington

The Journal of Portfolio Management 
https://jpm.pm-research.com/content/46/4/69

ABSTRACT: Investors have long relied on scenario analysis as an 
alternative to mean–variance analysis to help them construct portfo-
lios. Even though mean–variance analysis accounts for all potential 
scenarios, many investors find it difficult to implement because it 
requires them to specify statistical features of asset classes that are 
often unintuitive and difficult to estimate. Scenario analysis, by 
contrast, requires only that investors specify a small set of potential 
outcomes as projections of economic variables and assign probabilities 
to their occurrence. It is, therefore, more intuitive than mean–vari-
ance analysis, but it is highly subjective. In this article, the authors 
propose to replace the subjective elements of scenario analysis with a 
robust statistical process. They use a multivariate measure of statistical 
distance to estimate probabilities of prospective scenarios. Next, they 
construct portfolios that maximize utility for investors with different 
risk preferences. Last, the authors introduce a procedure for minimally 
modifying scenarios to render them consistent with prespecified views 
about their probabilities of occurrence.
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